Skip to main content

Methods to Monitor Process-Induced Changes in Food Proteins

An Overview

  • Chapter
Process-Induced Chemical Changes in Food

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 434))

Abstract

Proteins in food systems may undergo various changes in their structural properties as a consequence of processing. Whether these changes are beneficial or detrimental in terms of the nutritional, biological or functional properties of the processed system, it is important to apply analytical methods which can monitor the course of protein structural changes, in order to elucidate the underlying mechanism behind the results of different processes. Proteins are usually found in high concentrations in foods; furthermore, these proteins frequently may either initially be part of a solid food or may become insoluble due to processing. As a result, many of the traditional biochemical methods for analysis of protein structural properties in dilute solution cannot be applied directly to study food proteins. This chapter gives an overview of some potential methods which may be used to monitor the changes in quaternary, tertiary, secondary and primary structure of proteins in food systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akasaka, K. Spin diffusion and the dynamic structure of a protein Streptomyces subtilisin inhibitor. J. Magnet. Res. 1983, 35, 135–140.

    Google Scholar 

  • Andrade, J.D.; Hlady, V.L.; Van Wagenen, R.A., Effects of plasma protein adsorption on protein conformation and activity. Pure Appl Chem. 1984, 56, 1345–1350.

    Article  CAS  Google Scholar 

  • Arteaga, G.E. Assessment of protein surface hydrophobicity by spectroscopic methods and its relation to emulsifying properties of proteins. Ph.D. dissertation, University of British Columbia, Vancouver, BC, Canada, 1994.

    Google Scholar 

  • Arteaga, G.E.; Li-Chan, E.; Nakai, S. Assessment of protein surface hydrophobicity by proton nuclear magnetic resonance spectroscopy. Poster 68A-39, presented at Annual Meeting, Institute of Food Technologists, Anaheim, CA, June 3–7, 1995.

    Google Scholar 

  • Belton, P.S. New methods for monitoring changes in proteins. Food Rev. Intern. 1993, 9, 551–573.

    Article  CAS  Google Scholar 

  • Bouraoui, M. Surimi-based product development and viscous properties of surimi paste. Ph. D. Thesis, Department of Chemical Engineering, The University of British Columbia, Vancouver, BC, Canada, 1995.

    Google Scholar 

  • Boye, J.I.; Ismail, A.A.; Alli, I. Effects of physicochemical factors on the secondary structure of β-lactoglobulin. J. Dairy Res. 1996, 63, 97–109.

    Article  PubMed  CAS  Google Scholar 

  • Cardamone, M.; Puri, N.K. Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochemical J. 1992, 282, 589–593.

    CAS  Google Scholar 

  • Colaianni, S.E.M.; Aubard, J.; Hansen, S.H.; Nielsen, O.F. Raman spectroscopic studies of some biochemically relevant molecules. Vibrational Spectroscopy 1995, 9, 111–120.

    Article  CAS  Google Scholar 

  • Colvin, J.R. Denaturation: A. Requiem. In Symposium on Foods: Proteins and Their Reactions’, Schultz, H.W.; Anglemier, A.F., Eds.; AVI Publishing Co., Westport, CT, 1964; pp 69–83.

    Google Scholar 

  • Creighton, T. E. Proteins. Structures and Molecular Properties. Second Edition. W.H. Freeman and Company, New York, 1993.

    Google Scholar 

  • Dalgliesh, D.G.; Home, D.S. Different coagulation and gelation modes of casein micelles followed by diffusing wave spectroscopy. In Protein Interactions; Visser, H., ed.; VCH Verlagsgesellschaft, Weinheim, Germany 1992, pp 87–101.

    Google Scholar 

  • Eckhardt, B.M.; Oeswein, J.Q.; Yeung, D.A.; Milby, T.D.; Bewley, T.A. A turbidimetric method to determine visual appearance of protein solutions. PDA J. Pharm. Sci. & Technol. 1994, 48, 64–70.

    CAS  Google Scholar 

  • FAO/WHO. Protein Quality Evaluation. Report of a joint FAO/WHO Expert Consultation. Food and Agriculture Organization of the United Nations, Rome, 1990.

    Google Scholar 

  • Fontecha, J.; Bellanato, J.; Juarez, M. Infrared and Raman spectroscopic study of casein in cheese: effect of freezing and frozen storage. J. Dairy Sci. 1993, 76, 3303–3309.

    Article  CAS  Google Scholar 

  • Gatti, C.A.; Risso, P.H.; Pires, M.S. Spectrofluorometric study on surface hydrophobicity of bovine casein micelles in suspension and during enzymic coagulation. J. Agric. Food Chem. 1995, 43, 2339–2344.

    Article  CAS  Google Scholar 

  • Grabarek, Z.; Leavis, P.C.; Gergely, J. Calcium binding to the low affinity sites in troponin C induces conformational changes in the high affinity domain. J. Biol. Chem. 1986, 261, 608–613.

    PubMed  CAS  Google Scholar 

  • Hattori, M.; Ametani, A.; Katakura, Y.; Shimizu, M.; Kaminogawa, S. Unfolding/refolding studies on bovine β-lactoglobulin with monoclonal antibodies as probes. Does a renatured protein completely refold? J. Biol. Chem. 1993, 268, 22414–22419.

    PubMed  CAS  Google Scholar 

  • Hirose, M. Molten globule state of food proteins. Trends Food Sci. Technol. 1993, 4, 48–51.

    Article  CAS  Google Scholar 

  • Home, D.S. Diffusing wave spectroscopy studies of gelling systems. In Photon Correlation Spectroscopy: Multi-component Systems; Schmitz, K.S., Ed., SPIE International Society for Optical Engineering, Bellingham, WA, 1991, pp 166–180.

    Google Scholar 

  • Iametti, S.; Cairoli, S.; De Gregori, B.; Bonomi, F. Modifications of high-order structures upon heating of β-lacto-globulin: dependence on the protein concentration. J. Agric. Food Chem. 1995, 43, 53–58.

    Article  CAS  Google Scholar 

  • Jackson, M.; Mantsch, H.H. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit. Rev. Biochem. Molec. Biol. 1995, 30, 95–120.

    Article  CAS  Google Scholar 

  • Jackson, M.; Mantsch, H.H. Artifacts associated with the determination of protein secondary structure by ATR-IR spectroscopy. Appl. Spectrosc. 1992, 46, 699–701.

    Article  CAS  Google Scholar 

  • Jardine, I. Molecular weight analysis of proteins. Methods in Enzymol. 1990, 193, 441–455.

    Article  CAS  Google Scholar 

  • Kato, A.; Nakai, S. Hydrophobicity determined by fluorescence probe method and its correlation with surface properties of proteins. Biochim. Biophys. Acta 1980, 624, 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Kumosinski, T.; Brown, E.M.; Farrell, H.M., Jr. Three-dimensional molecular modeling of bovine caseins: α81-ca-sein. J. Dairy Sci. 1991, 74, 2889–2895.

    Article  PubMed  CAS  Google Scholar 

  • Kumosinski, T.F.; Farrell, H.M., Jr. Determination of the global secondary structure of proteins by Fourier transform infrared (FTIR) spectroscopy. Trends Food Sci. Technol. 1993, 4, 169–175.

    Article  CAS  Google Scholar 

  • Li-Chan, E. Hydrophobicity in food protein systems. In Encyclopedia of Food Science and Technology; Hui, Y.H., Ed.; John Wiley and Sons, Inc., New York, NY, 1991; pp 1429–1439.

    Google Scholar 

  • Li-Chan, E.; Nakai, S. Raman spectroscopic study of thermally and/or dithiothreitol induced gelation of lysozyme. J. Agric. Food Chem. 1991, 39, 1238–1245.

    Article  CAS  Google Scholar 

  • Li-Chan, E.; Nakai, S.; Hirotsuka, M. Raman spectroscopy as a probe of protein structure in food systems. In Protein Structure-Function Relationships in Foods; Yada, R.Y; Jackman, R.L.; Smith, J.L., Eds.; Blackie Acadmic & Professional, Chapman & Hall Inc., London, England, 1994; pp 163–197.

    Chapter  Google Scholar 

  • Mach, H.; Middaugh, C.R. Simultaneous monitoring of the environment of tryptophan, tyrosine and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopy. Anal. Biochem. 1994, 222, 323–331.

    Article  PubMed  CAS  Google Scholar 

  • Mach, H.; Volkin, D.B.; Burke, C.J.; Middaugh, C.R. Ultraviolet absorption spectroscopy. Methods in Molecular Biol. 1995, 40, 91–114.

    CAS  Google Scholar 

  • Marcone, M.F.; Beniac, D.R.; Harauz, G.; Yada, R.Y. Quaternary structure and model for the oligomeric seed globulin from Amaranthus hypochondriacus K343. J. Agric. Food Chem. 1994, 42, 2675–2678.

    Article  CAS  Google Scholar 

  • Matsuura, J.E.; and Manning, M.C. Heat-induced gel formation of β-lactoglobulin: A study on the secondary and tertiary structure as followed by circular dichroism spectroscopy. J. Agric. Food Chem. 1994, 42, 1650–1656.

    Article  CAS  Google Scholar 

  • Mayans, M.O.; Coadwell, W.J.; Beale, D.; Symons, D.B.; Perkins, S.J. Demonstration by pulsed neutron scattering that the arrangement of the Fab and Fc fragments in the overall structures of bovine IgG1 and IgG2 in solution is similar. Biochemical J. 1995, 311 (Pt. 1), 283–291.

    CAS  Google Scholar 

  • Mehta, PK.; Heringa, J.; Argos, P. A simple and fast approach to prediction of protein secondary structure from multiply aligned sequences with accuracy above 70%. Protein Sci. 1995, 4, 2517–2525.

    Article  PubMed  CAS  Google Scholar 

  • Mozo-Villarias, A.; Morros, A.; Andreu, J.M. Thermal transitions in the structure of tubulin: environments of aromatic amino acids. Eur. Biophys. J. 1991, 10, 295–300.

    Google Scholar 

  • Nakai, S.; Nonaka, M. Computation of molecular weight and weight fraction of five and six components in mixtures from model equilibrium ultracentrifugation data. J. Agric. Food Chem. 1992a, 40, 824–829.

    Article  CAS  Google Scholar 

  • Nakai, S.; Nonaka, M. Protein-protein interaction: an ultracentrifugal approach. In Protein Interactions; Visser, H., Ed.; VCH Verlagsgesellschaft, Weinheim, Germany, 1992b; pp 57–72.

    Google Scholar 

  • Nakai, S.; Li-Chan, E. Hydrophobie Interactions In Food Systems. CRC Press, Boca Raton, FL, 1988

    Google Scholar 

  • Nonaka, M.; Li-Chan, E.; Nakai, S. Raman spectroscopic study of thermally induced gelation of whey proeins. J. Agric. Food Chem. 1993, 41, 1176–1181.

    Article  CAS  Google Scholar 

  • Ogawa, M.; Kanamaru, J.; Miyashita, H.; Tamiya, T.; Tsuchiya, T. Alpha-helical structure of fish actomyosin: changes during setting. J. Food Sci. 1995, 60, 297.

    Article  CAS  Google Scholar 

  • Padrós, E.; Dunach, M.; Morros, A.; Sabés, M.; Manosa, J. Fourth-derivative spectrophotometry of proteins. Trends Biochem. Sci. 1984, 9, 508–510.

    Article  Google Scholar 

  • Perczel, A.; Park, K.; Fasman, G.D. Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: a practical guide. Anal. Biochem. 1992, 203, 83–93.

    Article  PubMed  CAS  Google Scholar 

  • Pjura, P.; Mcintosh, L.P.; Wozniak, J.A.; Matthews, B.W. Perturbation of Trp 138 in T4 lysozyme by mutations at Gln 105 used to correlate changes in structure, stability, solvation and spectroscopic properties. Proteins 1993, 15, 401–412.

    Article  PubMed  CAS  Google Scholar 

  • Przybycien, T.M.; Bailey, J.E. Structure-function relationships in the inorganic salt-induced precipitation of α-chy-motrypsin. Biochim. Biophys. Acta 1989, 995, 231–245.

    Article  PubMed  CAS  Google Scholar 

  • Ptitsyn, O.B. Molten globule and protein folding. Adv. Protein Chem. 1995, 47, 83–229.

    Article  PubMed  CAS  Google Scholar 

  • Ramsay, G.D.; Eftink, M.R. Analysis of multidimensional spectroscopic data to monitor unfolding of proteins. Methods in Enzymol. 1994, 240, 615–645.

    Article  CAS  Google Scholar 

  • Sackett, D.L.; Wolff, J. Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces. Anal. Biochem. 1987, 167, 228–234.

    Article  PubMed  CAS  Google Scholar 

  • Sarver, R. W., Jr.; Krueger, W.C. An infrared and circular dichroism combined approach to the analysis of protein secondary structure. Anal. Biochem. 1991, 199, 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Sawyer, L.; Holt, C. The secondary structure of milk proteins and their biological function. J. Dairy Sci. 1993, 76, 3062–3078.

    Article  PubMed  CAS  Google Scholar 

  • Schachman, H. K. Analytical ultracentrifugation reborn. Nature 1989, 341, 259–260.

    Article  Google Scholar 

  • Siuzdak, G. Mass Spectrometry for Biotechnology. Academic Press, San Diego, CA, 1996.

    Google Scholar 

  • Smith, V.F.; Schwartz, B.L.; Randall, L.L.; Smith, R.D. Electrospray mass spectrometric investigation of the chaperone Sec B. Protein Sci. 1996, 5, 488–494.

    Article  PubMed  CAS  Google Scholar 

  • Sreerama, N.; Woody, R.W. A self-consistent method for analysis of protein secondary structure from circular dichroism. Anal. Biochem. 1993, 209, 32–44.

    Article  PubMed  CAS  Google Scholar 

  • Sreerama, N.; Woody, R.W. Poly(Pro)II helices in globular proteins: identification and circular dichroic analysis. Biochemistry 1994, 33, 10022–10025.

    Article  PubMed  CAS  Google Scholar 

  • Stanley, D.W.; Yada, R.Y. Physical consequences of thermal reactions in food protein systems. In Physical Chemistry of Foods; Schwartzberg, H.G.; Hartel, R.W., Eds.; Marcel Dekker, Inc., New York, NY, 1992; pp 669–733.

    Google Scholar 

  • Strasburg, G.M.; Ludescher, R.D. Theory and applications of fluorescence spectroscopy in food research. Trends Food Sci. Technol. 1995, 6, 69–75.

    Article  CAS  Google Scholar 

  • Stults, J.T. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Current Opinion Structural Biol. 1995, 5, 691–698.

    Article  CAS  Google Scholar 

  • Susi, H.; Byler, D.M. Fourier deconvolution of the Amide I Raman band of proteins as related to conformation. Appl. Spectrosc. 1988a, 42, 819–826.

    Article  CAS  Google Scholar 

  • Susi, H.; Byler, D.M. Fourier transform infrared spectroscopy in protein conformation studies. In Methods for Protein Analysis; Cherry, J.P.; Barford, R.A., Eds.; American Oil Chemists’ Society, Champaign, IL, 1988b; pp 235–255.

    Google Scholar 

  • Tanford, C. Protein denaturation. Part B. Adv. Protein Chem. 1968, 23, 121–275.

    Article  PubMed  CAS  Google Scholar 

  • Tani, F.; Murata, M.; Higasa, T.; Goto, M.; Kitaatake, N.; Doi, E. Molten globule state of protein molecules in heat-induced transparent food gels. J. Agric. Food Chem. 1995, 43, 2325–2331.

    Article  CAS  Google Scholar 

  • Tournadje, A.; Alcorn, S.W.; Johnson, W. C., Jr. Extending CD spectra of proteins to 168 nm improves the analysis for secondary structures. Anal. Biochem. 1992, 200, 321–331.

    Article  Google Scholar 

  • Tsutsui, T.; Li-Chan, E.; Nakai, S. A simple fluorometric method for fat-binding capacity as an index of hydropho-bicity of proteins. J. Food Sci. 1986, 51, 1268–1272.

    Article  CAS  Google Scholar 

  • VanStokkum, I.H.M.; Linsdell, H.; Hadden, J.M.; Haris, P.I.; Chapman, D.; Bloemendal, M. Temperature-induced changes in protein structures studied by Fourier transform infrared spectroscopy and global analysis. Biochemistry 1995, 34, 10508–10518.

    Article  CAS  Google Scholar 

  • Wang, C.-H.; Damodaran, S. Thermal gelation of globular proteins: influence of protein conformation on gel strength. J. Agric. Food Chem. 1991, 39, 433–438.

    Article  CAS  Google Scholar 

  • Wilder, C.L.; Friedrich, A.D.; Potts R.O., Daumy, G.O.; Francoeur, M.L. Secondary structural analysis of two recombinant murine proteins, interleukins la and 1β: Is infrared spectroscopy sufficient to assign structure? Biochemistry 1992, 31, 27–31.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R.W. Estimation of protein secondary structure from the laser Raman Amide I spectrum. J. Mol. Biol. 1983, 166, 581–603.

    Article  PubMed  CAS  Google Scholar 

  • Woody, R.W. Circular dichroism. Methods in Enzymol. 1995, 246, 34–71.

    Article  CAS  Google Scholar 

  • Yada, R. Y.; Harauz, G.; Marcone, M.F.; Beniac, D.R.; Ottensmeyer, F.R Visions in the mist: The Zeitgeist of food protein imaging by electron microscopy. Trends Food Sci. Technol. 1995, 6, 265–270.

    Article  CAS  Google Scholar 

  • Yada, R.Y.; Jackman, R.L.; Smith, J.L.; Marangoni, A.G. Analysis: Quantitation and physical characterization. In Food Proteins. Properties and Characterization; Nakai, S.; Modler, H.W., Eds.; VCH Publishers, Inc., New York, NY, 1996; pp 71–165.

    Google Scholar 

  • Yang, S.T.; Marchio, J.L.; Yen, J.W. A dynamic light scattering study of β-galactosidase: environmental effects on protein conformation and enzyme activity. Biotechnol. Prog. 1994, 10, 525–531.

    Article  PubMed  CAS  Google Scholar 

  • Yesilada, A.; Theobald, A.; Hider, R.C. Discrimination of bovine and porcine insulin by higher-order derivative UV-spectroscopy. J. Pharm. Biomed. Anal. 1992, 10, 699–703.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li-Chan, E.C.Y. (1998). Methods to Monitor Process-Induced Changes in Food Proteins. In: Shahidi, F., Ho, CT., van Chuyen, N. (eds) Process-Induced Chemical Changes in Food. Advances in Experimental Medicine and Biology, vol 434. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1925-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1925-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1927-4

  • Online ISBN: 978-1-4899-1925-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics