Skip to main content

Sucrose Loss and Color Formation in Sugar Manufacture

  • Chapter
Process-Induced Chemical Changes in Food

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 434))

Abstract

The chemical reactions contributing to sucrose loss and color formation in evaporators in sugar manufacture (i.e., hydrolysis of sucrose and degradation of monosaccharides at acid pH) are reviewed. A case study of a sugar factory’s evaporator system demonstrates that the measurement of small but real losses of sucrose across the process is not possible by conventional sugar factory analyses. Alternative, more accurate techniques (e.g., capillary gas chromatography or high performance ion chromatography [HPIC] with pulsed am-perometric detection [PAD]) are considered. In the case study, glucose:sucrose ratios are determined by HPIC, and sucrose loss across the evaporator is estimated to be 1.39% of total sucrose. Loss measurements are thought to be underestimates; reasons for underestimation and the sources of errors are discussed. An approach to a more definitive loss measurement is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, A.T.; Wood, R.M.; McDonald, M.P. Molecular association in the sucrose-water system. Sugar Tech. Rev. 1974, 2, 165–180.

    CAS  Google Scholar 

  • Antal, Jr., M.J.; Mok, W.S.L.; Richards, G.N. Kinetic studies of the reactions of ketoses and aldoses in water at high temperatures. 1. Mechanism of formation of 5-(Hydroxymethyl)-2-Furaldehyde from D-fructose and sucrose. Carbohydr. Res. 1990, 199, 91–109.

    Article  PubMed  CAS  Google Scholar 

  • Bock, K.; Lemieux, R.A. The conformational properties of sucrose in aqueous-solution-intromolecular hydrogen bonding. Carbohyd. Res. 1982, 100, 63–74.

    Article  CAS  Google Scholar 

  • Clarke, M.A. The effect of solution structure on electrode process in sugar solutions. Proc. 1970 Technical Session on Cane Sugar Refining Research, Boston, MA., 1970; 179–188.

    Google Scholar 

  • Clarke, M. A.; Brannan M. A.; Carpenter F.G. A study of sugar inversion losses by high pressure liquid chromatography. Proc. 1976 Technical Session on Cane Sugar Refining Research, New Orleans, LA, 1977; pp. 46–56.

    Google Scholar 

  • de Bruijn, J.M.; van der Poel, P.W.; Heringa, R.; van den Bliek, M. Sugar degradation in sugar beet extraction, a model study. C.I.T.S., Cambridge, U.K., 1991; 379–390.

    Google Scholar 

  • Eggleston, G.; Vercellotti, J. R.; Edye L. A.; Clarke, M. A. Behavior of water structure-breaking and structure-enhancing solutes on the thermal degradation of concentrated solutions of sucrose. J. Carbohyd. Chem. 1995a, 14, 1035–1042.

    Article  CAS  Google Scholar 

  • Eggleston, G.; Vercellotti, J. R.; Edye L. A.; Clarke, M. A. The chemistry of salt-catalyzed degradation of sucrose in concentrated aqueous solutions of sucrose. International Society of Sugar Cane Technologists, XXII Congress, Cartagena de Indias, Colombia (Sept, 1995), 1995b.

    Google Scholar 

  • Eggleston, G.; Vercellotti, J. R.; Edye L. A.; Clarke, M. A. Effects of salts on the initial thermal-degradation of concentrated aqueous-solutions of sucrose. J. Carbohyd. Chem. 1996, 15, 81–94.

    Article  CAS  Google Scholar 

  • International Commission for Uniform Methods of Sugar Analysis (ICUMSA) Methods Book, ICUMSA, England, 1994.

    Google Scholar 

  • Kelly, F.H.C.; Brown D.W. Thermal decomposition and colour formation in aqueous sucrose solutions. Sugar Technol. Rev. 1978/79, 6, 1–48.

    CAS  Google Scholar 

  • Kharin, S.E.; Sapronov, A.R. Effect of pH and temperature on the stability of sucrose solutions. Int. Sugar J. 1969, 71, 122.

    Google Scholar 

  • Marshall, W.L.; Frank, E.U. Equation for the ion product of water. J Chem. Phys. Ref. Data, 1981, 10, 295–304.

    Article  CAS  Google Scholar 

  • Mauch, W. The chemical properties of sucrose. Sugar Technol. Rev. 1971, 1, 239–290.

    CAS  Google Scholar 

  • McDonald, E.J. Invert formation in sucrose solutions. J. Res. Nat. Bur. Stand. 1950, 45, 200.

    Article  CAS  Google Scholar 

  • Mega, T.L.; Van Etten, R.L. The 0–18 isotope shift in C-13 nuclear magnetic-resonance spectroscopy. 12. Position of bond cleavage in the acid-catalyzed hydrolysis of sucrose. J. Amer. Chem. Soc. 1988, 110, 6372–6376.

    Article  CAS  Google Scholar 

  • Pancoast, H.M.; Junk, W.R. in Handbook of Sugars, 2nd edn, AVI Publishing Co., Westport, Connecticut, 1980.

    Google Scholar 

  • Parker, K.J. Chemical problems in the sucrose industry. La Sucrerie Belge, 1970, 89, 119–126.

    CAS  Google Scholar 

  • Perez, S.; Meyer, C; Imberty, A.; French, A. in M. Mathlouthi, J.A. Kanters and G. Birch (Eds.), Sweet Taste Chemoreception, Elsevier, Amsterdam, 1992; pp. 55–73.

    Google Scholar 

  • Poppe, L.; van Halbeek, H. The rigidity of sucrose: just an illusion? J. Am. Chem. Soc. 1992, 114, 1092–94.

    Article  CAS  Google Scholar 

  • Purchase, B.S.; Day-Lewis, C.M.J.; Schäffler, K.J. A comparative study of sucrose degradation in different evaporators. Proc. South African Sugar Technol. Assoc. 1987; pp. 8–13.

    Google Scholar 

  • Schäffler, K.; Smith, J. True sucrose versus pol — The effect on cane quality and factory balance data. Proc. South African Sugar Technol. Assoc. 1978; pp. 59–63.

    Google Scholar 

  • Silin, P.M. Technology of Beet-sugar Production and Refining, Published for the U.S. Dept. Agric. & the Nat. Sci. Fdn., 1964, Washington D.C. by the Israel Program for Scientific Translations.

    Google Scholar 

  • Spencer, G.L.; Meade, G.P. in Cane Sugar Handbook, 9th Edn., John Wiley & Sons, New York, 1963; pp. 26–27.

    Google Scholar 

  • Sugar Milling Research Institute (South Africa) Annual Report (1993–94), pp. 9–10.

    Google Scholar 

  • Vercellotti, S.V.; Clarke, M.A. Methods of sugar analysis: comparison of modern and traditional methods. Internat. Sugar J., 1994, 96, 437–445.

    CAS  Google Scholar 

  • Vukov, K. Kinetics aspects of sucrose hydrolysis. International Sugar J. 1965, 67, 172–175.

    CAS  Google Scholar 

  • Wolfrom, M.L.; Shilling W.L. Action of heat on D-fructose. III. Interconversion to D-glucose. J. Am. Chem. Soc. 1951, 73, 3557.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Edye, L.A., Clarke, M.A. (1998). Sucrose Loss and Color Formation in Sugar Manufacture. In: Shahidi, F., Ho, CT., van Chuyen, N. (eds) Process-Induced Chemical Changes in Food. Advances in Experimental Medicine and Biology, vol 434. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1925-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1925-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1927-4

  • Online ISBN: 978-1-4899-1925-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics