Skip to main content

Involvement of the Multiple Tumor Suppressor Genes and 12-Lipoxygenase in Human Prostate Cancer

Therapeutic Implications

  • Chapter
Eicosanoids and other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury 3

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 407))

Abstract

A substantial amount of evidence suggests that neoplastic transformation may result from alterations in tumor suppressor genes whose products negatively regulate cell growth. To date, a number of tumor suppressor genes (e. g., RB, p53, DCC, APC/MCC, NF1, NF2, WT1, VHL, BRCA1, MST1, and WAF1/CIP1 genes) have been identified and have been shown to be important in a variety of human malignancies such as cancers of the colon, lung, breast, and esophagus (see refs. 1 and 2 for reviews). Tumor suppressor genes are potential targets for various inactivational events leading to prostatic tumorigenesis. However, it is possible that the genes which play a critical role in cancer development of one cell type may not necessarily be involved in the carcinogenesis of other cell types. For example, certain proto-oncogenes are only expressed in a tissue and cell type specific manner, and thus the deregulation of the expression of these genes would result in cell type specific neoplastic transformation. Accumulative evidence supports the cell type specific involvement of tumor suppressor genes in human cancers. The retinoblastoma (RB) tumor suppressor gene is one such example. While allelic deletions or mutations of the RB gene were demonstrated in approximately 75% of retinoblastomas, similar molecular alterations of this gene were found in less than 10% of colorectal cancers. This suggests that the RB gene may not play an important role in the development of colorectal cancers. Investigations by Vogelstein and associates demonstrated allelic deletions of chromosome 5q, 17p, and 18p in more than 55–85% of colorectal cancer patients studied3. These results showed that such mutational events occurred in a majority of colorectal cancers and suggested that genes located on these subchromosomal regions may play key roles in the genesis of this cancer type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. X. Gao, and K.V. Honn. Recessive oncogenes: Current status. Pathol. Oncol. Res. 1:7–22 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. X. Gao, A.T. Porter, and K.V. Honn. Tumor suppressor genes and their involvement in human prostate cancer. Cancer Mol. Biol. 2:475–498 (1995).

    Google Scholar 

  3. B. Vogelstein, E.R. Fearon, S.E. Kern, S.R. Hamilton, C. Preisinger, Y. Nakamura, and R. White. Allelotype of colorectal carcinomas. Science (Washington DC) 244:207–211 (1989).

    Article  CAS  Google Scholar 

  4. R. Bookstein, J-Y. Shew, P.-L. Chen, P. Scully, and W.H. Lee. Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science (Washington DC) 247:712–715 (1990).

    Article  CAS  Google Scholar 

  5. R. Bookstein, P. Rio, and S. Madreperla. Promoter deletion and loss of retinoblastoma gene expression in human prostate carcinoma. Proc. Natl. Acad. Sci. USA. 87:7762–7766 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. F.H. Sarkar, W. Sakr, and Y.-W. Li. Analysis of retinoblastoma (RB) gene deletion in human prostatic carcinomas. Prostate 21:145–152 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. S.M.A. Phillips, D.G. Morton, S.J. Lee, D.M.A. Wallace, and J.P. Neoptolemos, Loss of heterozygosity of the retinoblastoma and adenomatous polyposis succeptibility gene loci and in chromosomes 10p, 10q and 16q in human prostate cancer. Brit. J. Urol. 73:390–395 (1994).

    Article  PubMed  CAS  Google Scholar 

  8. B.S. Carter, C.M. Ewing, W.S. Ward, B.F. Treiger, T.W. Aalders, J.A. Schalken, J.I. Epstein, and W.B. Isaacs. Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc. Natl. Acad. Sci. USA. 87:8751–8755 (1990).

    Article  PubMed  CAS  Google Scholar 

  9. W.B. Isaacs, B.S. Carter, and C.M. Ewing. Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles. Cancer Res., 51:4716–4720 (1991).

    PubMed  CAS  Google Scholar 

  10. B. Vogelstein, and K.W Kinzler. X-rays strike p53 again. Nature 370:174–175 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. E. White. p53, guardian of Rb. Nature 371:21–22 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. M.S. Greenblatt, W.P. Bennett, M. Hollstein, and C.C. Harris. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54:4855–4878 (1994).

    PubMed  CAS  Google Scholar 

  13. P. J. Van Veldhuizen, R. Sadasivan, F. Garcia, M. S. Austenfeld, and R.L. Stephens. Muatnt p53 expression in prostate carcinoma. Prostate 22:23–30 (1993).

    Article  PubMed  Google Scholar 

  14. P.J. Van Veldhuizen, R. Sadasivan, R. Cherian, T. Dwyer, and R.L. Stephens. p53 expression in incidental prostatic cancer. Am. J. Med. Sci. 305:275–279 (1993).

    Article  PubMed  Google Scholar 

  15. Y. Soini, P. Päakkö, K. Nuorva, D. Kamel, D.R Lane, and K. Vahakangas. Comparative analysis of p53 protein immunoreactivity in prostatic, lung and breast carcinomas. Arch. A. Pathol. Anat. Histopathol. 421:223–228 (1992).

    Article  CAS  Google Scholar 

  16. P.J. Effert, R.H. McCoy, P.J. Walther, E.T. Lui. p53 gene alterations in human prostate carcinoma. J. Urol. 150:257–261 (1993).

    PubMed  CAS  Google Scholar 

  17. S.J. Thompson, K. Mellon, R.G. Charlton, C Marsh, M. Robinson and D.E. Neal. P53 and Ki-67 immunoreactivity in human prostate cancer and benign hyper-plasia. Br. J. Urol. 69:609–613 (1992).

    Article  PubMed  CAS  Google Scholar 

  18. M. Watanabe, T. Ushijima, H. Kakiuchin T. Shiraishi, R. Yatani, J. Shimazaki, T. Dotake, T. Sugimrua, and M. Nagao. p53 gene mutations in human prostate cancers in Japan: Different mutation spectra between Japan and Western countries. Jap. J. Cancer Res. 85:904–910 (1994).

    Article  CAS  Google Scholar 

  19. M. Ittmann, R. Wieczorek, P. Heller, A. Dave, J. Provet, and J. Krolewski. Alterations in the p53 and MDM-2 genes are infrequent in clinically localized, stage B prostate adenocarcinomas. Am. J. Pathol. 145:287–293 (1994).

    PubMed  CAS  Google Scholar 

  20. T. Uchida, C Wada, T. Shitara, S. Egawa, and D. Koshiba. Infrequent involvement of p53 gene-mutations in the tumorigenesis of Japanese prostate-cancer. Brit. J. Cancer 68:751–755 (1993).

    Article  PubMed  CAS  Google Scholar 

  21. N.M. Navone, P. Troncoso, L.L. Pisters, T.L. Goodrow, J.L. Palmer, W.W. Nichols, A. von Eschenbach, and CJ. Conti. p53 protein accumulation an gene mutation in the progression of human prostate carcinoma. J. Natl. Cancer Inst. 85:1657–1669 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. R. Bookstein, D. MacGrogan, S.G. Hilsenbeck, F. Sharkey, and D.C Allred. p53 is mutated in a subset of advanced stage prostate cancers. Cancer Res. 53:3369–73 (1993).

    PubMed  CAS  Google Scholar 

  23. B.V.S. Kallakury, J. Figge, J.S. Ross, H.A.G. Fisher, H.L. Figge, and T.A. Jennings. Association of p53 immunoreactivity with high Gleason tumor grade in prostatic adenocarcinoma. Hum. Pathol. 25:92–97 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. X. Gao, A.T. Porter, J.E. Pontes, and K.V. Honn. Diagnostic and prognostic markers for human prostate cancer. Prostate In press (1996).

    Google Scholar 

  25. F.J. Meyers, S.-G. Chi, J.R. Fishman, R.W. deVere White, and P.H. Gumerlock. p53 mutations in benign prosatic hyperplasia. J. Natl. Cancer Inst. 85:1856–1858 (1993).

    Article  PubMed  CAS  Google Scholar 

  26. S.-G. Chi, R.W. deVere White, F.J. Meyers, D.B. Siders, F. Lee, P.H. Gumerlock. p53 in prostate cancer: frequent expressed transition mutations. J. Natl. Cancer Inst. 86:926–933 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. Y.Q. Chen, X. Gao, D. Grignon, F.H. Sarkr, W. Sakr, K.V. Honn, J.S. Borders, and J.D. Crissman. Multiple mechanisms of p53 inactivation in human prostate cancer. Cancer Mol. Biol. 1:357–367 (1994).

    CAS  Google Scholar 

  28. X. Gao, K.V. Honn, D. Grignon, W. Sakr, Y.Q. Chen. Frequent loss of expression and loss of heterozygosity of the putative tumor suppressor gene DCC in prostatic carcinomas. Cancer Res. 53:2723–2727 (1993).

    PubMed  CAS  Google Scholar 

  29. X. Gao, A. Zacharek, D. Grignon, H. Liu, W. Sakr, A.T. Porter, Y.Q. Chen, and K.V. Honn. High frequency of loss of expression and allelic deletion of the APC and MCC genes in human prostatic carcinomas. Int. J. Oncol. 6:111–117 (1995).

    PubMed  CAS  Google Scholar 

  30. E.R. Fearon, K.R. Cho, J.M. Nigro, S.E. Kern, J.W. Simons, J. M. Ruppert, S.R. Hamilton, A.C. Preisinger, G. Thomas, K.W. Kinzler, and B. Vogelstein. Identifi-cation of a chromosome 18q gene that is altered in colorectal carcinoma. Science (Washington DC), 247:49–56 (1990).

    Article  CAS  Google Scholar 

  31. K.R. Cho, J.D. Oliner, J.W. Simons, L. Hedrick, E.R. Fearon, A.C. Preisinger P. Hedge, G.A. Silverman, and B. Vogelstein. The DCC gene-structural-analysis and mutations in colorectal carcinomas. Genomics, 19:525–531 (1994).

    Article  PubMed  CAS  Google Scholar 

  32. L. Hedrick, K.R. Cho, and E.R. Fearon. The DCC gene product in cellular differentiation and colorectal tumorgenesis. Genes Dev. 8:1174–1183 (1994).

    Article  PubMed  CAS  Google Scholar 

  33. M.A. Reale, G. Hu, A.I. Zafar, R.H. Getzenberg, S.M. Levine, and E.R. Fearon. Expression and alternative splicing of the deleted in colorectal cancer (DCC) gene in normal and malignant tissues. Cancer Res. 54:4493–4501 (1994).

    PubMed  CAS  Google Scholar 

  34. WE. Pierceall, K.R. Cho, R. H. Getzenberg, M.A. Reale, L. Hedrick, B. Vogelstein, and E.R. Fearon, NIH3T3 cells expressing the deleted in colorectal cancer tumor suppressor gene product stimulate neurite outgrowth in rat PC 12 pheochromo-cytoma cells. J Cell Biol. 124:1017–1027. (1994).

    Article  PubMed  CAS  Google Scholar 

  35. R. Narayanan, K.G. Lawlor, R.Q. Schaapvel, K.R. Cho, B. Vogelstein, P.B.V. Tran, M.P. Osborne, and N.T. Telang. Antisense RNA to the putative tumor-suppressor gene DCC transforms Rat-I fibroblasts. Oncogene 7:533–561 (1992).

    Google Scholar 

  36. S.F. Brewster S. Browne, and K.W. Brown, Somatic allelic loss at the DCC, APC, NM23-H1 and P53 tumorsuppressor gene loci in human prostatic-carcinoma. J. Urol. 151:1073–1077 (1994).

    PubMed  CAS  Google Scholar 

  37. H. Suzuki, S. Aida, S. Akimoto, T. Igarashi, R. Tatani, and J. Shimazaki. State of adenomatous polyposis coli gene and RAS oncogenes in Japanese prostate cancer. Jap. J. Cancer Res. 85:847–852 (1994).

    Article  CAS  Google Scholar 

  38. X. Gao, N. Wu, D. Grignon, A. Zacharek, H. Liu, A. Salkowski, G. Li, W. Sakr, F. Sarkar, A.T. Porter, Y.Q. Chen, and K.V. Honn. High frequency of mutator phenotype in human prostatic adenocarcinoma. Oncogene 9:2999–3003 (1994).

    PubMed  CAS  Google Scholar 

  39. R. Fishel, M. Kay-Lescoe, M.R.S. Rao, N.G. Copeland, N.A. Jenkins, J. Garber, M. Kane, and R. Kolodner. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–1038 (1993).

    Article  PubMed  CAS  Google Scholar 

  40. F.S. Leach, N.C. Nicolaides, N. Paradopoulos, B. Liu, J. Jen, R. Parsons, P. Peltomaki, P. Sistonen, L.A. Alionen, M. Nystrom-Lahti, X Y. Guan, J. Zhang, P.S. Meltzer, W. Yu, F.T. Kao, D.J. Chen, K.M. Cerosaletti, R.E.K. Fournier, S. Todd, T. Lewis, R.J. Leach, S.L. Naylor, J. Weissenbach, J.P. Mecklin, H. Jarvinen, G.M. Petersen, S.R. Hamilton, J. Green, J. Jass, P. Watson, H.T. Lynch, J.M. Trent A. de la Chapelle, K.W. Kinzler, and B. Vogelstein. Mutations of a MutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75:1215–1225 (1993).

    Article  PubMed  CAS  Google Scholar 

  41. R.D. Kolodner, N.R. Hall, J. Lipford, M.F. Kane, P.T. Morrison, P.J. Finan, J. Burn, P. Chapman, C. Earabino, E. Merchant, and D.T. Bishop. Structure of teh human MLH1 locus and analysis of a large hereditary nonpolyposis colorectal carcinoma kindred for mlhl mutations. Cancer Res. 55:242–248 (1995).

    PubMed  CAS  Google Scholar 

  42. M. Koi, A. Umar, D.P. Chauhan, S.P. Cherian, J.M. Carethers, T.A. Kunkel, and C.R. Bolard. Human chromosome 3 corrects micmatch repair deficiency and microsatellite instability and reduces N-Methyl-N’-nitro-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLH1 mutation. Cancer Res. 54:4308–4312 (1994).

    PubMed  CAS  Google Scholar 

  43. T. ychida, C. Wada, C. Wang, H. Ishida, S. Egawa, E. Yokiyama, H. Ohtani, and E. Koshiba. Microsatellite instability in prostate cancer. Oncogene, 10:1019–1022 (1995).

    Google Scholar 

  44. M.R. Emmert-Buck, M.J. Roth, J. Teruya-Feldstein, LJ. Medeiros, W.G. Stetler-Stevenson, L.A. Liotta, and Z. Zhuang. Detection of nm23 microsatellite instability in microdissected human prostate cancer specimens. Lab. Invest. Abst. No. 427, 72:75A (1995).

    Google Scholar 

  45. K. Kunimi, U.S.R. Bergerheim, I-L. Larsson, P. Ekman, and V.P. Collins. Alllotyping of human prostatic adenocarcinoma. Genomics 11:530–536 (1991).

    Article  PubMed  CAS  Google Scholar 

  46. U.S.R. Bergerheim, K. Kumimi, V.P. Collins, and P. Ekman. Deletion mapping of chromosomes 8, 10, and 16 in human prostatic carcinoma. Gene Chromosom. Cancer 3:215–220 (1993).

    Article  Google Scholar 

  47. X. Gao, N. Wu, D. Grignon, W. Sakr, A.T. Porter, K.V. Honn. Allelic deletion of microsatellite loci on chromosome 6p in a subset of human prostate cancer. Cancer Mol. Biol. 1:297–304 (1994).

    CAS  Google Scholar 

  48. M. Nakanishi, R.S. Robetorye, G.R. Adami, O.M. Pereira-Smith, and J.R. Smith, Identification of the active region of the DNA synthesis inhibitory gene p21 Sdi1/CIP1/WAF1. EMBO J. 14:555–563 (1995).

    PubMed  CAS  Google Scholar 

  49. J.W. Harper, S.J. Elledge, K. Keyomarsi, B. Dynlacht, L.-H. Tsai, P. Zhang, S. Dobrowolski, C. Bai, L. Connell-Crowley, E. Swindell, M.P. Fox, and N. Wei. Inhibition of cyclin-dependent kinases by p21. Mol. Biol. Cell. 6:387–400 (1995).

    PubMed  CAS  Google Scholar 

  50. X. Gao, Y.Q. Chen, N. Wu, D.J. Grignon, W. Sakr, A.T. Porter, K.V. Honn. Somatic mutations of the WAF1/CIP1 gene in primary prostate cancer. Oncogene 11:1395–1398 (1995).

    PubMed  CAS  Google Scholar 

  51. A. Elbendary, A. Berchuck, P. Davis, L. Havrilesky, R.C.Jr. Bast, J.D. Iglehart, and J.R. Marks. Transforming growth factor b1 can induce CIP1/WAF1 expression independent of the p53 pathway in ovarian cancer cells. Cell Grow. Different. 5:1301–1307 (1994).

    CAS  Google Scholar 

  52. M.S. Sheikh, X.-S. Li, J.-C. Chen, Z.-M. Shao, J.V. Ordonez, and J.A. Fontana, Mechanisms of regulation of Waf1/CIP1 gene expression in human breast carcinoma: role of p53-dependent and independent signal transduction pathways. Oncogene 9:3407–3415 (1994).

    PubMed  CAS  Google Scholar 

  53. H. Jiang, J. Lin, Z.-Z. Su, R.R. Collari, E. Huberman, and P.B. Fisher. Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53. Oncogene 9:3397–3406 (1994).

    PubMed  CAS  Google Scholar 

  54. R.A. Steinman, B. Hoffman, A. Iro, C. Cuilouf, D.A. Liebermann, and M.E. El-Houseini. Induction of p21 (WAF-1/CIP1) during differentiation. Oncogene 9:3389–3396 (1994).

    PubMed  CAS  Google Scholar 

  55. W. Zhang, L. Graso, C.D. McClain, A.M. Gambel, Y. Cha. S. Travali, A.B. Deisseroth, and W.E. Mercer. p53-independent induction of WAF/CIP1 in human leukemia cells is correlated with growth arrest accompanying monocyte/ macrophage differentiation. Cancer Res. 55:668–674 (1995).

    PubMed  CAS  Google Scholar 

  56. O. Halevy, B.G. Novitch, D.B. Spicer, S.X. Skapek, J. Rhee, G.J. Hannon, D. Beach, A.B. and Lassar. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science (Washington DC) 267:1018–1021 (1995).

    Article  CAS  Google Scholar 

  57. S.B. Parker, G. Eichele, P. Zhang, A. Rawls, A.T. Sands, A. Bradley, E.N. Olson, J.W. Harper, and S.J. Elldge. p53-independent expression of p21Cip1 in muscle and other terminally differentiation cells. Science (Washington DC) 267:1024–1027 (1995).

    Article  CAS  Google Scholar 

  58. W.S. El-Deiry, T. Tokino, V.E. Velculescu, D.B. Levy, R. Parsons, J.M. Trent, D. Lin, E. Mercer, K.W. Kinzler, and B. Vogelstein. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825 (1993).

    Article  PubMed  CAS  Google Scholar 

  59. J.W. Harper, G.R. Adami, N. Wei, K. Keyomarsi, and S.J. Elledge. The p21 Cdk-interaction protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816 (1993).

    Article  PubMed  CAS  Google Scholar 

  60. J. Chen, P.K. Jackson, M.W. Kirchner, and A. Dutta. Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA. Nature (Lond). 374:386–388 (1995).

    Article  CAS  Google Scholar 

  61. J. Trapman, H.F.B.M. Sleddens, M.M. van der Weiden, W.N.M. Dinjens, J.J. Konig, F.H. Schroder, P.W. Faber, and F.T. Bosman, Loss of heterozygosity of chromo-some 8 microsatellite loci implicates a candidate tumor suppressor gene between the loci D8S87 and D8S133 in human prostate cancer. Cancer Res. 54:6061–6064 (1994).

    PubMed  CAS  Google Scholar 

  62. G.S. Bova, B.S. Carter, M.J.G. Bussemakers, M. Emi, Y. Fujiwara, N. Kyprianou, S.C. Jacobs, J.C. Robinson, J.I. Epstein, P.C. Walsh, W.B. Isaacs. Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res. 53:3869–73 (1993).

    PubMed  CAS  Google Scholar 

  63. D. Macgrogan, A. Levy, D. Bostwick, M. Wagner, D. Wells, and R. Bookstein. Loss of chromosome arm 8p loci in prostate-cancer-mapping by quantitative allelic imbalance. Gene Chrom Cancer 10:151–159 (1994).

    Article  CAS  Google Scholar 

  64. H. Matsuyama, Y. Pan, L. Skoog, B. Tribukait, K. Naito, P. Ekman, P. Lichter, U.S.R. Bergerheim. Deletion mapping of chromosome 8p in prostatecancer by fluorescence in situ hybridization. Oncogene 9:3071–3076(1994).

    PubMed  CAS  Google Scholar 

  65. J. Kagan, J. Stein, R.J. Babaian, Y.-S. Joe, L.L. Pisters, A.B. Glassman, A.C. von Eschenbach, and P. Troncoso. Homozygous deletion at 8p22 and 8p21 in prostate cancer implicate these regions as the sites for candidate tumor suppressor genes. Oncogene 11:2121–2126 (1995).

    PubMed  CAS  Google Scholar 

  66. G.S. Bova, M.J.G. Bussmakers, J.C. Robinson, D. MacGrogan, A. Levy, R. Bookstein, and W.B. Isaacs. Homozygous deletion mapping of a one m egabase region of 8p22 in a human prostate cancer. Abst. Book, Basic and clinical aspects of prostate cancer, Palm Springs, CA, USA, Abstract No. A-4, December 8–12 (1994).

    Google Scholar 

  67. J. C. Zenklusen, C. Thompson, P. Troncoso, J. Kagan, and C.J. Conti, Loss of heterozygosity in human primary prostate carcinomas: a possible tumor suppre-ssor gene at 7q31.1. Cancer Res. 54:6370–6373 (1994).

    PubMed  CAS  Google Scholar 

  68. C.W. Rinker-Schaeffer, A.L. Hawkins, N. Ru, J. Dong, G. Stoica, C.A. Griffin, T. Ichikawa, J.C. Barrett, J.T. Isaacs. Differential suppression of mammary and prostate cancer metastasis by human chromosomes 17 and 11. Cancer Res. 54:6249–6256 (1994).

    PubMed  CAS  Google Scholar 

  69. K.A. Cooney, J.C. Wetzel, S.D. Merajver, J.A. Macoska, T.P. Singleton, and K.J. Wojno. Distinct regions of allelic loss on 13q in prostate cancer. Cancer Res. 56:1142–1145 (1996).

    PubMed  CAS  Google Scholar 

  70. J.T. Dong, P.W. Lamb, C.W. Rinker-Schaeffer, J. Vukanovic, T Ichikawa, J.T. Isaacs, and J.C. Barrett. KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science (Washington DC) 268:884–6 (1995).

    Article  CAS  Google Scholar 

  71. X. Gao, A. Zacharek, A. Salkowski, D. Grignon, W. Sakr, A.T. Porter, and K.V. Honn. Loss of heterozygosity of the BRCA1 and other loci on chromosome 17q in human prostate cancer. Cancer Res. 55:1002–1005 (1995).

    PubMed  CAS  Google Scholar 

  72. X. Gao, A. Zacharek, D. Grignon, W. Sakr, A.T. Porter, and K.V. Honn. Localization of potential tumor suppressor loci to a <2 Mb region on chromosome 17q in human prostate cancer. Oncogene 11:1241–1247 (1995).

    PubMed  CAS  Google Scholar 

  73. S.L. Parker, T. Tong, S. Bolden, and P.A. Wingo. Cancer statistics 1996. Ca Cancer J Clin. 65:5–27 (1996).

    Article  Google Scholar 

  74. A. Chiarodo. National cancer institute roundtable on prostate cancer: Future research directions. Cancer Res. 51:2498–2505 (1991).

    PubMed  CAS  Google Scholar 

  75. M.B. Garnick. Prostate Cancer: Screening, diagnosis, and management. Ann Int Med 118:804–818 (1993).

    Article  PubMed  CAS  Google Scholar 

  76. K.V. Honn, D.G. Tang, X. Gao, I.A. Butovich, B. Lui, J. Timar, W. Hagmann. 12-Lipoxygenases and 12(S)-HETE: role in cancer metastasis. Cancer Metastasis Rev. 13:365–396 (1994).

    Article  PubMed  CAS  Google Scholar 

  77. X. Gao, and K.V. Honn. 12-lipoxygenase and 12(S)-HETE in cancer invasion and metastasis. Adv. Oncol. 11(2):3–8 (1995).

    Google Scholar 

  78. X. Gao, and K.V. Honn. 12-lipoxygenase as a prostate cancer marker and therapeutic target. Adv. Oncol. 11(3):2–8 (1995).

    Google Scholar 

  79. X. Gao, D. Grignon, T. Chbihi, A. Zacharek, Y.Q. Chen, W. Sakr, A.T. Porter, J.D. Crissman, J.E. Pontes, I.J. Powell, and K.V. Honn. Elevated 12-lipoxygenase mRNA expression correlates with advanced stage and poor differentiation of human prostate cancer. Urol. 46:227–237 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gao, X., Porter, A.T., Honn, K.V. (1997). Involvement of the Multiple Tumor Suppressor Genes and 12-Lipoxygenase in Human Prostate Cancer. In: Honn, K.V., Marnett, L.J., Nigam, S., Jones, R.L., Wong, P.YK. (eds) Eicosanoids and other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury 3. Advances in Experimental Medicine and Biology, vol 407. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1813-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1813-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1815-4

  • Online ISBN: 978-1-4899-1813-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics