Skip to main content

Arabidopsis thaliana

A Robust Model System for Studying Plant-Pathogen Interactions

  • Chapter
Plant-Microbe Interactions

Part of the book series: Subcellular Biochemistry ((SCBI,volume 29))

Abstract

Arabidopsis thaliana is a rather unimposing crucifer that has rapidly developed into a major model system in experimental plant biology over the past 15 years. A. thaliana was first used experimentally almost 100 years ago, although it was not until the 1940s that its development into a bona fide model system began (Rédei, 1992). Numerous attributes contribute to the utility of A. thaliana as an experimental system. These include its rapid life cycle (4–6 weeks) and small size, which allow large numbers of plants to be expeditiously grown in soil or defined media, a small genome of ~ 1 Mbp with little repetitive DNA distributed among five chromosomes, the ability to generate large numbers of seeds by either self-fertilization or outcrossing, the relative ease of generating large mutant populations using a variety of mutagens, and facile methods of generating transgenic A. thaliana plants. These attributes make A. thaliana a powerful system for classical and molecular genetic studies of plant growth and development as well as plant responses to the environment (Rédei, 1975; Meyerowitz, 1987; Meyerowitz and Somerville, 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, L., and Somerville, S. C., 1996, Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana, Plant J. 9:341–356.

    PubMed  CAS  Google Scholar 

  • Aguilar, I., Sanchez, A., Martin, A. M., Martinez-Herrera, D., and Ponz, F., 1996, Nucleotide sequence of Chinese rape mosaic virus (oilseed rape mosaic virus), a crucifer tobamovirus infectious on Arabidopsis thaliana, Plant Mol. Biol. 30:191–197.

    PubMed  CAS  Google Scholar 

  • Ashfield, T., Keen, N. T., Buzzell, R. I., and Innes, R. W., 1995, Soybean resistance genes specific for different Pseudomonas syringae avirulence genes are allelic, or closely linked, at the RPG1 locus, Genetics 141:1597–1604.

    PubMed  CAS  Google Scholar 

  • Atkinson, M. M., and Baker, C. J., 1989, Role of the plasmalemma H+-ATPase in Pseudomonas syringae-induced K+/H+ exchange in suspension-cultured tobacco cells, Plant Physiol. 91:298–303.

    PubMed  CAS  Google Scholar 

  • Aufsatz, W., and Grimm, C., 1994, A new, pathogen-inducible gene of Arabidopsis is expressed in an ecotype-specific manner, Plant Mol Biol. 25:229–239.

    PubMed  CAS  Google Scholar 

  • Baker, C. J., O’Neill, N. R., Keppler, L. D., and Orlandi, E. W., 1991, Early responses during plant bacteria interactions in tobacco cell suspensions, Phytopathology 81:1504–1507.

    Google Scholar 

  • Balàzs, E., and Lebeurier, G., 1981, Arabidopsis is a host of cauliflower mosaic virus, Arabidopsis Inf. Serv. 18:130–134.

    Google Scholar 

  • Bell, A. A., 1981, Biochemical mechanisms of disease resistance, Annu. Rev. Plant Physiol. 32:21–81.

    CAS  Google Scholar 

  • Bender, C. L., Young, S. A., and Mitchell, R. E., 1991, Conservation of plasmid DNA sequences in coronatine-producing pathovars of Pseudomonas syringae, Appl. Environ. Microbiol. 57:993–999.

    PubMed  CAS  Google Scholar 

  • Bent, A. F., Kunkel, B. N., Dahlbeck, D., Brown, K. L., Schmidt, R., Giraudat, J., Leung, J., and Staskawicz, B., 1994, RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes, Science 265:1856–1860.

    PubMed  CAS  Google Scholar 

  • Bisgrove, S. R., Simonich, M. T., Smith, N. M., Sattler, A., and Innes, R. W., 1994, A disease resistance gene in Arabidopsis with specificity for two different avirulence genes, Plant Cell 6:927–933.

    PubMed  CAS  Google Scholar 

  • Böckenhoff, A., and Grundler, F. M. W., 1994, Studies on the nutrient uptake by the beet cyst nematode Heterodera schachtii by in situ microinjection of fluorescent probes into the feeding structures in Arabidopsis thaliana, Parasitology 109:249–254.

    Google Scholar 

  • Böckenhoff, A., Prior, D. A. M., Grundler, F. M. W., and Oparka, K. J., 1996, Induction of phloem unloading in Arabidopsis thaliana roots by the parasitic nematode Heterodera schachtii, Plant Physiol. 112:1421–1427.

    PubMed  Google Scholar 

  • Bol, J. F., Buchel, A. S., Knoester, M., Baladin, T., Van Loon, L. C., and Linthorst, H. J. M., 1996, Regulation of the expression of plant defence genes, Plant Growth Regul. 18:87–91.

    CAS  Google Scholar 

  • Bowling, S. A., Guo, A., Cao, H., Gordon, A. S., Klessig, D. F., and Dong, X., 1994, A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance, Plant Cell 6:1845–1857.

    PubMed  CAS  Google Scholar 

  • Bozarth, C., Weiland, J., and Dreher, T., 1992, Expression of ORF-69 of turnip yellow mosaic virus is necessary for viral spread in plants, Virology 187:124–130.

    PubMed  CAS  Google Scholar 

  • Buell, C. R., and Somerville, S. C., 1995, Expression of defense-related and putative signaling genes during tolerant and susceptible interactions of Arabidopsis with Xanthomonas campestris pv. campestris, Mol. Plant-Microbe Interact. 8:435–443.

    CAS  Google Scholar 

  • Callaway, A., Liu, W. N., Andrianov, V., Stenzler, L., Zhao, J. M., Wettlaufer, S., Jayakumar, P., and Howell, S. H., 1996, Characterization of cauliflower mosaic virus (CaMV) resistance in virus-resistant ecotypes of Arabidopsis, Mol. Plant Microbe Interact. 9:810–818.

    PubMed  CAS  Google Scholar 

  • Cameron, R. K., Dixon, R. A., and Lamb, C. J., 1994, Biologically induced systemic acquired resistance in Arabidopsis thaliana, Plant J. 5:715–725.

    Google Scholar 

  • Cao, H., Bowling, S. A., Gordon, A. S., and Dong, X., 1994, Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance, Plant Cell 6:1583–1592.

    PubMed  CAS  Google Scholar 

  • Cao, H., Glazebrook, J., Clarke, J. D., Volko, S., and Dong, X. N., 1997, The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats, Cell 88:57–63.

    PubMed  CAS  Google Scholar 

  • Century, K. S., Holub, E. B., and Staskawicz, B. J., 1995, NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen, Proc. Natl. Acad. Sci. USA 92:6597–6601.

    PubMed  CAS  Google Scholar 

  • Chien, C.-T., Bartel, P. L., Sternglanz, R., and Fields, S., 1991, The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest, Proc. Natl. Acad. Sci. USA 88:9578–9582.

    PubMed  CAS  Google Scholar 

  • Citovsky, V., Mclean, B. G., Zupan, J. R., and Zambryski, P., 1993, Phosphorylation of tobacco mosaic virus cell-to-cell movement protein by a developmentally regulated plant cell wall-associated protein kinase, Gene Dev. 7:904–910.

    PubMed  CAS  Google Scholar 

  • Collinge, D. B., and Slusarenko, A. J., 1987, Plant gene expression in response to pathogens, Plant Mol. Biol. 9:389–410.

    CAS  Google Scholar 

  • Côté, F., and Hahn, M. G., 1994, Oligosaccharins: Structures and signal transduction, Plant Mol. Biol. 26:1379–1411.

    PubMed  Google Scholar 

  • Crute, I. R., 1994, Gene-for-gene recognition in plant-pathogen interactions, Philos. Trans. R. Soc. Lond. Biol. 346:345–349.

    Google Scholar 

  • Crute, I., Beynon, J., Dangl, J., Holub, E., Mauch-Mani, B., Slusarenko, A., Staskawicz, B., and Ausubel, F., 1994, Microbial pathogenesis of Arabidopsis, in Arabidopsis (E. M. Meyerowitz and C. R. Somerville, eds.), pp. 705–747, CSHL Press, New York.

    Google Scholar 

  • Cuppels, D. A., and Ainsworth, T., 1995, Molecular and physiological characterization of Pseudomonas syringae pv. tomato and Pseudomonas syringae pv. maculicola strains that produce the phytotoxin coronatine, Appl. Environ. Microbiol. 61:3530–3536.

    PubMed  CAS  Google Scholar 

  • Dangl, J. L., 1993, Applications of Arabidopsis thaliana to outstanding issues in plant-pathogen interactions, Int. Rev. Cytol. 144:53–83.

    Google Scholar 

  • Dangl, J., Lehnackers, H., Kiedrowski, S., Debener, T., Rupprecht, C., Arnold, M., and Somssich, I., 1991, Interactions between Arabidopsis thaliana and phytopathogenic Pseudomonas pathovars: A model for the genetics of disease resistance, in Advances in Molecular Genetics of Plant-Microbe Interactions, Vol. 1 (H. Hennecke and D. P. S. Verma, eds.), pp. 78–83, Kluwer, Dordrecht, The Netherlands.

    Google Scholar 

  • Dangl, J. L., Ritter, C., Gibbon, M. J., Mur, L. A. J., Wood, J. R., Goss, S., Mansfield, J., Taylor, J. D., and Vivian, A., 1992, Functional homologs of the Arabidopsis RPM1 disease resistance gene in bean and pea, Plant Cell 4:1359–1369.

    PubMed  CAS  Google Scholar 

  • Daniels, M. J., Fan, M.-J., Barber, C. E., Clarke, B. R., and Parker, J. E., 1991, Interaction between Arabidopsis thaliana and Xanthomonas campestris, in Advances in Molecular Genetics of Plant-Microbe Interactions, Vol. 1 (H. Hennecke and D. P. S. Verma, eds.), pp. 84–89, Kluwer, Dordrecht, The Netherlands.

    Google Scholar 

  • Davis, K. R., 1992, Arabidopsis thaliana as a model host for studying plant-pathogen interactions, in Molecular Signals in Plant-Microbe Communication (D. P. S. Verma, ed.), pp. 393–406, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Davis, K. R., and Ausubel, F. M., 1989, Characterization of elicitor-induced defense responses in suspension-cultured cells of Arabidopsis, Mol. Plant-Microbe Interact. 2:363–368.

    Google Scholar 

  • Davis, K. R., Schott, E., and Ausubel, F. M., 1991, Virulence of selected phytopathogenic pseudomonads in Arabidopsis thaliana, Mol. Plant-Microbe Interact. 4:477–488.

    CAS  Google Scholar 

  • Dawson, W. O., 1992, Tobamovirus-plant interactions, Virology 186:359–367.

    PubMed  CAS  Google Scholar 

  • Debener, T., Lehnackers, H., Arnold, M., and Dangl, J. L., 1991, Identification and molecular mapping of a single Arabidopsis thaliana locus determining resistance to a phytopathogenic Pseudomonas syringae isolate, Plant J. 1:289–302.

    PubMed  CAS  Google Scholar 

  • Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut, R. M., Kessmann, H., Ward, E., and Ryals, J., 1994, A central role of salicylic acid in plant disease resistance, Science 266:1247–1250.

    PubMed  CAS  Google Scholar 

  • Delaney, T. P., Friedrich, L., and Ryals, J. A., 1995, Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance, Proc. Natl. Acad. Sci. USA 92:6602–6606.

    PubMed  CAS  Google Scholar 

  • Dempsey, D. A., Wobbe, K. K., and Klessig, D. F., 1993, Resistance and susceptible responses of Arabidopsis thaliana to turnip crinkle virus, Phythpathology 83:1021–1029.

    CAS  Google Scholar 

  • Dietrich, R. A., Delaney, T. P., Uknes, S. J., Ward, E. R., Ryals, J. A., and Dangl, J. L., 1994, Arabidopsis mutants simulating disease resistance response, Cell 77:565–577.

    PubMed  CAS  Google Scholar 

  • Dixon, R. A., and Harrison, M. J., 1990, Activation, structure and organization of genes involved in microbial defense in plants, Adv. Genet. 28:165–234.

    PubMed  CAS  Google Scholar 

  • Dixon, R. A., and Paiva, N. L., 1995, Stress-induced phenylpropanoid metabolism, Plant Cell 7:1085–1097.

    PubMed  CAS  Google Scholar 

  • Dong, X., Mindrinos, M., Davis, K. R., and Ausubel, F. M., 1991, Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene, Plant Cell 3:61–72.

    PubMed  CAS  Google Scholar 

  • Durbin, R. D., 1991, Bacterial phytotoxins—Mechanisms of action, Experientia 47:776–783.

    CAS  Google Scholar 

  • Feys, B. J. F., Benedetti, C. E., Penfold, C. N., and Turner, J. G., 1994, Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen, Plant Cell 6:751–759.

    PubMed  CAS  Google Scholar 

  • Fletcher, J., and Eastman, C. E., 1992, Arabidopsis thaliana as an experimental host of the mollicute Spiroplasma citri, Plant Dis. 76:862–864.

    Google Scholar 

  • Fletcher, J., Golino, D. A., and Eastman, C. E., 1993, Arabidopsis as an experimental host plant of the phytopathogenic mollicutes, in Arabidopsis thaliana as a Model for Plant-Pathogen Interactions (K. R. Davis and R. Hammerschmidt, eds.), pp. 99–108, APS Press, St. Paul.

    Google Scholar 

  • Flor, H., 1971, Current status of the gene-for-gene concept, Annu. Rev. Phytopathol. 9:275–296.

    Google Scholar 

  • German, T. L., Adkins, S., Witherell, A., Richmond, K. E., Knaack, W. R., and Willis, D. K., 1995, Infection of Arabidopsis thaliana ecotype Columbia by tomato spotted wilt virus, Plant Mol. Biol. Rep. 13:110–117.

    Google Scholar 

  • Glazebrook, J., and Ausubel, F. M., 1994, Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens, Proc. Natl. Acad. Sci. USA 91:8955–8959.

    PubMed  CAS  Google Scholar 

  • Glazebrook, J., Rogers, E. E., and Ausubel, F. M., 1996, Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening, Genetics 143:973–982.

    PubMed  CAS  Google Scholar 

  • Goddijn, O. J. M., Lindsey, K., van der Lee, F. M., Klap, J. C., and Sijmons, P. C., 1993, Differential gene expression in nematode-induced feeding structures of transgenic plants harbouring promoter-gusA fusion constructs, Plant J. 4:863–873.

    PubMed  CAS  Google Scholar 

  • Golino, D. A., Shaw, M., and Rappaport, L., 1988, Infectin of Arabidopsis thaliana (L.) Heyhn. with a mycoplasma-like organism, the beet leafhopper transmitted virescence agent, Arabidopsis Inf. Serv. 26:9–14.

    Google Scholar 

  • Gopalan, S., Bauer, D. W., Alfano, J. R., Loniello, A. O., He, S. Y., and Collmer, A., 1996, Expression of the Pseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype-specific hypersensitive cell death, Plant Cell 8:1095–1105.

    PubMed  CAS  Google Scholar 

  • Grant, M. R., Godiard, L., Straube, E., Ashfield, T., Lewald, J., Sattler, A., Innes, R. W., and Dangl, J. L., 1995, Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance, Science 269:843–846.

    PubMed  CAS  Google Scholar 

  • Greenberg, J. T., and Ausubel, F. M., 1993, Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging, Plant J. 4:327–342.

    PubMed  CAS  Google Scholar 

  • Greenberg, J. T., Guo, A., Klessig, D. F., and Ausubel, F. M., 1994, Programmed cell death in plants: A pathogen-triggered response activated coordinately with multiple defense functions, Cell 77:551–563.

    PubMed  CAS  Google Scholar 

  • Gross, D. C., 1991, Molecular and genetic analysis of toxin production by pathovars of Pseudomonas syringae, Annu. Rev. Phytopathol. 29:247–278.

    CAS  Google Scholar 

  • Hahlbrock, K., and Scheel, D., 1989, Physiology and molecular biology of phenylpropanoid metabolism, Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:347–369.

    CAS  Google Scholar 

  • Heath, M. C., 1991, The role of gene-for-gene interactions in the determination of host species specificity, Phytopathology 81:127–130.

    Google Scholar 

  • Hinsch, M., and Staskawicz, B., 1996, Identification of a new Arabidopsis disease resistance locus, RPS4, and cloning of the corresponding avirulence gene, avrRps4, from Pseudomonas syringae pv. pisi, Mol. Plant-Microbe Interact. 9:55–61.

    PubMed  CAS  Google Scholar 

  • Holub, E. B., Beynon, J. L., and Crute, I. R., 1994, Phenotypic and genotypic characterization of interactions between isolates of Peronospora parasitica and accessions of Arabidopsis thaliana, Mol. Plant-Microbe Interact. 7:223–239.

    CAS  Google Scholar 

  • Holub, E. B., Brose, E., Tör, M., Clay, C., Crate, I. R., and Beynon, J. L., 1995, Phenotypic and genotypic variation in the interaction between Arabidopsis thaliana and Albugo Candida, Mol. Plant-Microbe Interact. 8:916–928.

    PubMed  CAS  Google Scholar 

  • Hughes, R. K., Perbal, M. C., Maule, A. J., and Hull, R., 1995, Evidence for proteolytic processing of tobacco mosaic viras movement protein in Arabidopsis thaliana, Mol. Plant-Microbe Interact. 8:658–665.

    PubMed  CAS  Google Scholar 

  • Innes, R., Bisgrove, S., Smith, N., Bent, A., Staskawicz, B., and Liu, Y., 1993, Identification of a disease resistance locus in Arabidopsis that is functionally homologous to the RPG1 locus of soybean, Plant J. 4:813–820.

    PubMed  CAS  Google Scholar 

  • Ishikawa, M., Obata, F., Kumagai, T., and Ohno, T., 1991, Isolation of mutants of Arabidopsis thaliana in which accumulation of tobacco mosaic viras coat protein is reduced to low levels, Mol. Gen. Genet. 230:33–38.

    PubMed  CAS  Google Scholar 

  • Ishikawa, M., Naito, S., and Ohno, T., 1993, Effects of the tom1 mutation of Arabidopsis thaliana on the multiplication of tobacco mosaic viras RNA in protoplasts, J. Virol. 67:5328–5338.

    PubMed  CAS  Google Scholar 

  • Jabs, T., Dietrich, R. A., and Dangl, J. L., 1996, Initiation of runaway cell death in an Arabidopsis mutant by extracellular Superoxide, Science 273:1853–1856.

    PubMed  CAS  Google Scholar 

  • Johal, G. S., and Briggs, S. P., 1992, Reductase activity encoded by the HM1 disease resistance gene in maize, Science 258:985–987.

    PubMed  CAS  Google Scholar 

  • Johal, G. S., Hulbert, S. H., and Briggs, S. P., 1995, Disease lesion mimics of maize: A model for cell death in plants, BioEssays 17:685–692.

    Google Scholar 

  • Jones, A. M., and Dangl, J. L., 1996, Logjam at the Styx: Programmed cell death in plants, Trends Plant Sci. 1:114–119.

    Google Scholar 

  • Jones, J., 1996, Plant disease resistance genes: Structure, function and evolution, Curr. Opin. Biotechnol. 7:155–160.

    CAS  Google Scholar 

  • Joos, H. J., Mauch-Mani, B., and Slusarenko, A. J., 1996, Molecular mapping of the Arabidopsis locus RPP11 which conditions isolate-specific hypersensitive resistance against downy mildew in ecotype RLD, Theor. Appl. Genet. 92:281–284.

    CAS  Google Scholar 

  • Kauss, H., and Jeblick, W., 1995, Pretreatment of parsley suspension cultures with salicylic acid enhances spontaneous and elicited production of H2O2, Plant Physiol. 108:1171–1178.

    PubMed  CAS  Google Scholar 

  • Kauss, H., and Jeblick, W., 1996, Influence of salicylic acid on the induction of competence for H2O2 elicitation—Comparison of ergosterol with other elicitors, Plant Physiol. 111:755–763.

    PubMed  CAS  Google Scholar 

  • Keen, N. T., 1990, Gene-for-gene complementarity in plant-pathogen interactions, Annu. Rev. Genet. 24:447–463.

    PubMed  CAS  Google Scholar 

  • Keen, N. T., 1992, The molecular biology of disease resistance, Plant Mol. Biol. 19:109–122.

    PubMed  CAS  Google Scholar 

  • Keith, B., Dong, X. N., Ausubel, F. M., and Fink, G. R., 1991, Differential induction of 3-deoxy-d-ararbino-heptulosonate 7-phosphate synthase genes in Arabidopsis thaliana by wounding and pathogenic attack, Proc. Natl. Acad. Sci. USA 88:8821–8825.

    PubMed  CAS  Google Scholar 

  • Kiedrowski, S., Kawalleck, P., Hahlbrock, K., Somssich, I. E., and Dangl, J. L., 1992, Rapid activation of a novel plant defense gene is strictly dependent on the Arabidopsis-RPM1 disease resistance locus, EMBO J. 11:4677–4684.

    PubMed  CAS  Google Scholar 

  • Klessig, D. F., and Malamy, J., 1994, The salicylic acid signal in plants, Plant Mol. Biol. 26:1439–1458.

    PubMed  CAS  Google Scholar 

  • Koch, E., and Slusarenko, A., 1990a, Arabidopsis is susceptible to infection by a downy mildew fungus, Plant Cell 2:437–445.

    PubMed  CAS  Google Scholar 

  • Koch, E., and Slusarenko, A. J., 1990b, Fungal pathogens of Arabidopsis thaliana (L.) Heyn., Bot. Helv. 100:257–268.

    Google Scholar 

  • Kong, Q., Oh, J.-W., and Simon, A. E., 1995, Symptom attenuation by a normally virulent satellite RNA of turnip crinkle virus is associated with the coat protein open reading frame, Plant Cell 7:1625–1634.

    PubMed  CAS  Google Scholar 

  • Kuc, J., 1995, Phytoalexins, stress metabolism, and disease resistance in plants, Annu. Rev. Phytopathol. 33:275–297.

    PubMed  CAS  Google Scholar 

  • Kunkel, B. N., Bent, A. F., Dahlbeck, D., Innes, R. W., and Staskawicz, B. J., 1993, RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2, Plant Cell 5:865–875.

    PubMed  CAS  Google Scholar 

  • Lamb, C. J., 1994, Plant disease resistance genes in signal perception and transduction, Cell 76:419–422.

    PubMed  CAS  Google Scholar 

  • Lawrence, G. J., Finnegan, E. J., Ayliffe, M. A., and Ellis, J. G., 1995, The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N, Plant Cell 7:1195–1206.

    PubMed  CAS  Google Scholar 

  • Lawton, K., Weymann, K., Friedrich, L., Vernooij, B., Uknes, S., and Ryals, J., 1995, Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene, Mol. Plant-Microbe Interact. 8:863–870.

    PubMed  CAS  Google Scholar 

  • Lawton, K. A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Staub, T., and Ryals, J., 1996, Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway, Plant J. 10:71–82.

    PubMed  CAS  Google Scholar 

  • Lazarowitz, S. G., 1992, Geminiviruses: Genome structure and function, Crit. Rev. Plant Sci. 11:327–349.

    CAS  Google Scholar 

  • Lee, D., Ellard, M., Wanner, L. A., Davis, K. R., and Douglas, C. J., 1995, The Arabidopsis thaliana 4-coumarate: CoA ligase (4CL) gene: Stress and developmentally regulated expression and nucleotide sequence of its cDNA, Plant Mol. Biol. 28:871–884.

    PubMed  CAS  Google Scholar 

  • Lee, J. M., Hartman, G. L., Domier, L. L., and Bent, A. F., 1996, Identification and map location of TTR1, a single locus in Arabidopsis thaliana that confers tolerance to tobacco ringspot nepovirus, Mol. Plant Microbe Interact. 9:729–735.

    PubMed  CAS  Google Scholar 

  • Lee, S., Stenger, D. C., Bisaro, D. M., and Davis, K. R., 1994, Identification of loci in Arabidopsis that confer resistance to geminivirus infection, Plant J. 6:525–535.

    PubMed  CAS  Google Scholar 

  • Leisner, S. M., and Howell, S. H., 1992, Symptom variation in different Arabidopsis thaliana ecotypes produced by cauliflower mosaic virus, Phytopathology 82:1042–1046.

    Google Scholar 

  • Leisner, S. M., Turgeon, R., and Howell, S. H., 1993, Effects of host plant development and genetic determinants on the long-distance movement of cauliflower mosaic virus in Arabidopsis, Plant Cell 5:191–202.

    PubMed  CAS  Google Scholar 

  • Leister, R. T., Ausubel, F. M., and Katagiri, F., 1996, Molecular recognition of pathogen attach occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genes RPS2 and RPM1, Proc. Natl. Acad. Sci. USA 93:15497–15502.

    PubMed  CAS  Google Scholar 

  • Low, P. S., and Merida, J. R., 1996, The oxidative burst in plant defense: Function and signal transduction, Physiol. Plant. 96:533–542.

    CAS  Google Scholar 

  • Lummerzheim, M., de Oliveira, D., Castresana, C., Miguens, F. C., Louzada, E., Roby, D., Van Montagu, M., and Timmerman, B., 1993, Identification of compatible and incompatible interactions between Arabidopsis thaliana and Xanthomonas campestris pv. campestris and characterization of the hypersensitive response, Mol. Plant-Microbe Interact. 6:532–544.

    CAS  Google Scholar 

  • Madamanchi, N. R., and Kuc, J., 1991, Induced systemic resistance in plants, in The Fungal Spore and Disease Initiation in Plants and Animals (G. T. Cole and H. C. Hoch, eds.), pp. 347–362, Plenum Press, New York.

    Google Scholar 

  • Matern, U., and Kneusel, R. E., 1988, Phenolic compounds in plant disease resistance, Phytoparasitica 16:153–170.

    CAS  Google Scholar 

  • Mauch-Mani, B., and Slusarenko, A. J., 1993, Arabidopsis as a model host for studying plant-pathogen interactions, Trends Microbiol. 1:265–270.

    PubMed  CAS  Google Scholar 

  • Mauch-Mani, B., and Slusarenko, A. J., 1996, Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica, Plant Cell 8:203–212.

    PubMed  CAS  Google Scholar 

  • Mehdy, M. C., 1994, Active oxygen species in plant defense against pathogens, Plant Physiol. 105:467–472.

    PubMed  CAS  Google Scholar 

  • Melan, M. A., Dong, X., Endara, M. E., Davis, K. R., Ausubel, F. M., and Peterman, T. K., 1993, An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate, Plant Physiol. 101:441–450.

    PubMed  CAS  Google Scholar 

  • Melcher, U., 1989, Symptoms of cauliflower mosiac virus infection in Arabidopsis thaliana and turnip, Bot. Gaz. 150:139–147.

    Google Scholar 

  • Melcher, U., Gardner, C. O., and Essenberg, R. C., 1981, Clones of cauliflower mosaic virus identified by molecular hybridization in turnip leaves, Plant Mol. Biol. 1:63–73.

    CAS  Google Scholar 

  • Meyerowitz, E. M., 1987, Arabidopsis thaliana, Annu. Rev. Genet. 21:93–111.

    PubMed  CAS  Google Scholar 

  • Meyerowitz, E. M., and Somerville, C. R., eds., 1994, Arabidopsis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Mindrinos, M., Katagiri, F., Yu, G. L., and Ausubel, F. M., 1994, The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats, Cell 78:1089–1099.

    PubMed  CAS  Google Scholar 

  • Mittal, S., and Davis, K. R., 1995, Role of the phytotoxin coronatine in the infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato, Mol. Plant-Microbe Interact. 8:165–171.

    PubMed  CAS  Google Scholar 

  • Mur, L., Naylor, G., Warner, S., Sugars, J. M., White, R. F., and Draper, J., 1996, Salicylic acid potentiates defence gene expression in tissue exhibiting acquired resistance to pathogen attack, Plant J. 9:559–571.

    CAS  Google Scholar 

  • Niebel, A., Engler, J. D., Hemerly, A., Ferreira, P., Inzé, D., Van, M. M., and Gheysen, G., 1996, Induction of cdc2a and cyc At expression in Arabidopsis thaliana during early phases of nematode-induced feeding cell formation, Plant J. 10:1037–1043.

    PubMed  CAS  Google Scholar 

  • Oh, J. W., Kong, Q. Z., Song, C. Z., Carpenter, C. D., and Simon, A. E., 1995, Open reading frames of turnip crinkle virus involved in satellite symptom expression and incompatibility with Arabidopsis thaliana ecotype Dijon, Mol. Plant-Microbe Interact. 8:979–987.

    PubMed  CAS  Google Scholar 

  • Parker, J. E., Barber, C. E., Mi-jiao, F., and Daniels, M. J., 1993, Interaction of Xanthomonas campestris with Arabidopsis thaliana: Characterization of a gene from X. c. pv. raphani that confers avirulence to most A. thaliana accessions, Mol. Plant-Microbe Interact. 6:216–224.

    PubMed  CAS  Google Scholar 

  • Rahme, L. G., Stevens, E. J., Wolfort, S. F., Shao, J., Tompkins, R. G., and Ausubel, F. M., 1995, Common virulence factors for bacterial pathogenicity in plants and animals, Science 268:1899–1902.

    PubMed  CAS  Google Scholar 

  • Ramachandra, S., Lommel, S., and White, F., 1988, Interaction of turnip yellow mosaic virus (TYMV) with Arabidopsis thaliana, Phytopathology 78:1559.

    Google Scholar 

  • Rédei, G. P., 1975, Arabidopsis as a genetic tool, Annu. Rev. Genet. 9:111–127.

    PubMed  Google Scholar 

  • Rédei, G., 1992, A heuristic glance at the past of Arabidopsis genetics, in Methods in Arabidopsis Research (C. Koncz, N.-H. Chua, and J. Schell, eds.), pp. 1–15, World Scientific Singapore.

    Google Scholar 

  • Reignault, P., Frost, L. N., Richardson, H., Daniels, M. J., Jones, J., and Parker, J. E., 1996, Four Arabidopsis RPP loci controlling resistance to the Noco2 isolate of Peronospora parasitica map to regions known to contain other RPP recognition specificities, Mol. Plant-Microbe Interact. 9:464–473.

    PubMed  CAS  Google Scholar 

  • Reuber, T. L., and Ausubel, F. M., 1996, Isolation of Arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPM1 disease resistance genes, Plant Cell 8:241–249.

    PubMed  CAS  Google Scholar 

  • Ryals, J., Lawton, K. A., Delaney, T. P., Friedrich, L., Kessmann, H., Neuenschwander, U., Uknes, S., Vernooij, B., and Weymann, K., 1995, Signal transduction in systemic acquired resistance, Proc. Natl. Acad. Sci. USA 92:4202–4205.

    PubMed  CAS  Google Scholar 

  • Ryan, C. A., 1994, Oligosaccharide signals: From plant defense to parasite offense, Proc. Natl. Acad. Sci. USA 91:1–2.

    PubMed  CAS  Google Scholar 

  • Schaller, A., and Ryan, C. A., 1996, Systemin—A polypeptide defense signal in plants, BioEssays 18:27–33.

    PubMed  CAS  Google Scholar 

  • Sharma, Y. K., and Davis, K. R., 1995, Isolation of a novel Arabidopsis ozone-induced cDNA by differential display, Plant Mol. Biol. 29:91–98.

    PubMed  CAS  Google Scholar 

  • Sharma, Y. K., León, J., Raskin, I., and Davis, K. R., 1996, Ozone-induced responses in Arabidopsis thaliana: The role of salicylic acid in the accumulation of defense-related transcripts and induced resistance, Proc. Natl. Acad. Sci. USA 93:5099–5104.

    PubMed  CAS  Google Scholar 

  • Sijmons, P. C., Atkinson, H. J., and Wyss, U., 1994, Host cell responses to plant-parasitic nematodes, Annu. Rev. Phytopathol. 32:235–259.

    CAS  Google Scholar 

  • Sijmons, P. C., Grundler, F. M. W., Vonmende, N., Burrows, P. R., and Wyss, U., 1991, Arabidopsis thaliana as a new model host for plant-parasitic nematodes, Plant J. 1:245–254.

    Google Scholar 

  • Sijmons, P. C., von Mende, N., and Grundler, F. M. W., 1994, Plant-parasitic nematodes, in Arabidopsis (E. M. Meyerowitz and C. R. Somerville, eds.), pp. 749–767, CSHL Press, New York.

    Google Scholar 

  • Simon, A. E., 1994, Interactions between Arabidopsis thaliana and viruses, in Arabidopsis (E. M. Meyerowitz and C. R. Somerville, eds.), pp. 685–704, CSHL Press, New York.

    Google Scholar 

  • Simon, A. E., Li, X. H., Lew, J. E., Stange, R., Zhang, C., Polacco, M., and Carpenter, C. D., 1992, Susceptibility and resistance of Arabidoposis thaliana to turnip crinkle virus, Mol. Plant-Microbe Interact. 5:496–503.

    Google Scholar 

  • Simonich, M. T., and Innes, R. W., 1995, A disease resistance gene in Arabidopsis with specificity for the avrPph3 gene of Pseudomonas syringae pv. phaseolicola, Mol. Plant-Microbe Interact. 8:637–640.

    PubMed  CAS  Google Scholar 

  • Simpson, R. B., and Johnson, L. J., 1990, Arabidopsis thaliana as a host for Xanthomonas campestris pv. campestris, Mol. Plant-Microbe Interact. 3:233–237.

    Google Scholar 

  • Skotnicki, M. L., Mackenzie, A. M., Torronen, M., and Gibbs, A. J., 1993, The genomic sequence of cardamine chlorotic fleck carmovirus, J. Gen. Virol. 74:1933–1937.

    PubMed  CAS  Google Scholar 

  • Stanley, J., 1991, The molecular determinants of geminivirus pathogenesis, Semin. Virol. 2:139–149.

    CAS  Google Scholar 

  • Staskawicz, B. J., Ausubel, F. M., Baker, B. J., Ellis, J. G., and Jones, J., 1995, Molecular genetics of plant disease resistance, Science 268:661–667.

    PubMed  CAS  Google Scholar 

  • Stenger, D. C., 1994, Complete nucleotide sequence of the hypervirulent CFH strain of beet curly top virus, Mol. Plant-Microbe Interact. 7:154–157.

    PubMed  CAS  Google Scholar 

  • Stenger, D. C., Davis, K. R., and Bisaro, D. M., 1992, Limited replication of tomato golden mosaic virus DNA in expiants of nonhost species, Mol. Plant-Microbe Interact. 5:525–527.

    CAS  Google Scholar 

  • Susnova, V., and Polak, Z., 1975, Susceptibility of Arabidopsis thaliana to infection with some plant viruses, Biol. Planta 17:156–158.

    Google Scholar 

  • Tsuji, J., and Somerville, S. C., 1988, Xanthomonas campestris pv. campestris-induced chlorosis in Arabidopsis thaliana, Arabidopsis Inf. Serv. 26:1–8.

    Google Scholar 

  • Tsuji, J., Somerville, S. C., and Hammerschmidt, R., 1991, Identification of a gene in Arabidopsis thaliana that controls resistance to Xanthomonas campestris pv. campestris, Physiol. and Mol. Plant Pathol. 38:57–65.

    Google Scholar 

  • Tsuji, J., Jackson, E. P., Gage, D. A., Hammerschmidt, R., and Somerville, S. C., 1992, Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv. syringae, Plant Physiol. 98:1304–1309.

    PubMed  CAS  Google Scholar 

  • Uknes, S., Winter, A. M., Delaney, T., Vernooij, B., Morse, A., Friedrich, L., Nye, G., Potter, S., Ward, E., and Ryals, J., 1993, Biological induction of systemic acquired resistance in Arabidopsis, Mol. Plant-Microbe Interact. 6:692–698.

    Google Scholar 

  • Vernooij, B., Friedrich, L., Goy, P. A., Staub, T., Kessmann, H., and Ryals, J., 1995, 2,6-Dichloroisonicotinic acid-induced resistance to pathogens without the accumulation of salicylic acid, Mol. Plant-Microbe Interact. 8:228–234.

    CAS  Google Scholar 

  • Wanner, L. A., Mittal, S., and Davis, K. R., 1993, Recognition of the avirulence gene avrB from Pseudomonas syringae pv. glycinea by Arabidopsis thaliana, Mol. Plant-Microbe Interact. 6:582–591.

    PubMed  CAS  Google Scholar 

  • Wellink, J., van Lent, J. W., Verver, J., Sijen, T., Goldbach, R. W., and van Kammen, A., 1993, The cowpea mosaic virus M RNA-encoded 48-kilodalton protein is responsible for induction of tubular structures in protoplasts, J. Virol. 67:3660–3664.

    PubMed  CAS  Google Scholar 

  • Weymann, K., Hunt, M., Uknes, S., Neuenschwander, U., Lawton, K., Steiner, H. Y., and Ryals, J., 1995, Suppression and restoration of lesion formation in Arabidopsis lsd mutants, Plant Cell 7:2013–2022.

    PubMed  CAS  Google Scholar 

  • Whalen, M. C., Innes, R. W., Bent, A. F., and Staskawicz, B. J., 1991, Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean, Plant Cell 3:49–59.

    PubMed  CAS  Google Scholar 

  • Whitham, S., Dinesh, K. S., Choi, D., Hehl, R., Corr, C., and Baker, B., 1994, The product of the tobacco mosaic virus resistance gene N: Similarity to Toll and the interleukin-1 receptor, Cell 78:1101–1115.

    PubMed  CAS  Google Scholar 

  • Wyss, U., Grundler, F. M. W., and Munch, A., 1992, The parasitic behaviour of 2nd-stage juveniles of Meloidogyne incognita in roots of Arabidopsis thaliana, Nematologica 38:98–111.

    Google Scholar 

  • Yu, G. L., Katagiri, F., and Ausubel, F. M., 1993, Arabidopsis mutations at the RPS2 locus result in loss of resistance to Pseudomonas syringae strains expressing the avirulence gene avrRpt2, Mol. Plant-Microbe Interact. 6:434–443.

    PubMed  CAS  Google Scholar 

  • Zijlstra, C., and Hohn, T., 1992, Cauliflower mosaic virus gene VI controls translation from dicistronic expression units in transgenic Arabidopsis plants, Plant Cell 4:1471–1484.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davis, K.R. (1998). Arabidopsis thaliana. In: Biswas, B.B., Das, H.K. (eds) Plant-Microbe Interactions. Subcellular Biochemistry, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1707-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1707-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1709-6

  • Online ISBN: 978-1-4899-1707-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics