Skip to main content

Developmental and Metabolic Adaptations during Symbiosis between Legume Hosts and Rhizobia

  • Chapter
Plant-Microbe Interactions

Part of the book series: Subcellular Biochemistry ((SCBI,volume 29))

Abstract

Root nodule development is a unique process where bacteria reside intracellularly inside a host cell and contribute to the nitrogen requirement of the host plant. A molecular communication between the bacteria and host plants results in the organogenesis of nodules. The host roots exude flavonoids that act as chemotactic agents to attract the rhizobia to move toward the root surface and act as inducers for rhizobial nod genes. The nod genes encode enzymes responsible for biosynthesis and secretion of Nod factors (Carlson et al., 1994). The latter are active in eliciting morphological changes in the host roots and initiate root nodule organogenesis. It has been suggested that such factors may exist in plants to regulate normal morphogenesis programs. The host induces a set of genes encoding the nodulin proteins that are required for organogenesis and function of the root nodules. The metabolism of the host is adapted to meet the requirements of nitrogen fixation by bacteria and their assimilation by the host in root nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anthon, G., and Emerich, D., 1990, Developmental regulation of enzymes of sucrose and hexose metabolism in effective and ineffective soybean nodules, Plant Physiol. 92:346–351.

    PubMed  CAS  Google Scholar 

  • Ardourel, M., Demont, N., Debelle, F., Maillet, F., deBilly, F., Prome, J.-C., Denarie, J., and Truchet, G., 1994, Rhizobium meliloti lipooligosaccharide nodulation factors: Different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses, Plant Cell 6:1357–1374.

    PubMed  CAS  Google Scholar 

  • Atkins, C. A., 1981, Metabolism of purine nucleotides to form ureides in nitrogen-fixing nodules of cowpea (Vigna unguicilata L. Walp), FEBS Lett. 125:89–93.

    CAS  Google Scholar 

  • Atkins, C. A., 1991, Ammonia assimilation and export of nitrogen from the legume nodule, in Biology and Biochemistry of Nitrogen Fixation (M. Dilworth and A. Glenn, eds.), pp. 293–319, Elsevier, Amsterdam.

    Google Scholar 

  • Atkins, C. A., Sanford, P. J., Storer, P. J., and Pate, J. S., 1988, Inhibition of nodule functioning in cowpea by a xanthine oxido reductase inhibitor, allopurinol, Plant Physiol. 88:1229–1234.

    PubMed  CAS  Google Scholar 

  • Baev, N., Endre, G., Petrovics, G., Banfalvi, Z., and Kondorosi, A., 1991, Six nodulation genes of nod box locus-4 in Rhizobium meliloti are involved in nodulation signal production—nodM codes for d-glucosamine synthetase, Mol. Gen. Genet. 228:113–124.

    PubMed  CAS  Google Scholar 

  • Bauer, P., Crespi, M., Szecsi, J., Allison, L., Schultze, M., Ratet, P., Kondorosi, E., and Kondorosi, A., 1994, Alfalfa Enod12 genes are differentially regulated during nodule development by Nod factors and Rhizobium invasion, Plant Physiol. 105:585–592.

    PubMed  CAS  Google Scholar 

  • Bibb, M. J., Biro, S., Motamedi, H., Collins, J. F., and Hutchinson, C. R., 1989, Analysis of the nucleotide sequence of the Streptomyces glaucescens tmcI gene provides information about the enzymology of polyketide antibiotic biosynthesis, EMBO J. 8:2727–2736.

    PubMed  CAS  Google Scholar 

  • Bloemberg, G. V., Thomas, O. J., Lugtenberg, B., and Spaink, H. P., 1994, Nodulation protein NodL of Rhizobium leguminosarum O-acetylates lipo-oligosaccharides, chitin fragments and N-acetylglucosamine in vitro, Mol. Microbiol. 11:793–804.

    PubMed  CAS  Google Scholar 

  • Boland, M. J., and Schubert, K. R., 1983, Biosynthesis of purines by a proplastid fraction from soybean nodules, Arch. Biochem. Biophys. 220:179–187.

    PubMed  CAS  Google Scholar 

  • Boland, M. J., Hanks, J. F., Reynolds, P. H. S., Belvins, D. G., Tolbert, N. E., and Schubert, K. R., 1982, Subcellular organization of ureide biogenesis from glycolytic intermediates and ammonium from nitrogen-fixing soybean nodules, Planta 155:45–51.

    CAS  Google Scholar 

  • Brink, B. A., Miller, J., Carlson, R. W., and Noel, K. D., 1990, Expression of Rhizobium leguminosarum CFN42 genes for lipo-polysaccharides in strains derived from different R. leguminosarum soil isolates, J. Bacteriol. 172:548–555.

    PubMed  CAS  Google Scholar 

  • Carlson, R., Price, N., and Stacey, G., 1994, The biosynthesis of rhizobial lipooligosaccharide nodulation signal molecules, Mol. Plant-Microbe Interact. 7:684–695.

    PubMed  CAS  Google Scholar 

  • Cervantes, E., Sharma, S. B., Maillet, F., Vasse, J., Truchet, G., and Rosenberg, C., 1989, The Rhizobium meliloti host range nodQ gene encodes a gene which share homology with translation elongation and initiation factors, Mol. Microbiol. 3:745–755.

    PubMed  CAS  Google Scholar 

  • Chapman, K. A., Delauney, A. J., Kim, J. H., and Verma, D. P. S., 1994, Structural characterization of de novo purine biosynthesis enzymes in plants: 5-Aminoimidazole ribonucleotide carboxylase and 5-aminoimidazole-4-N-succinocarboxamide ribonucleotide synthetase cDNAs from Vigna aconitifolia, Plant Mol. Biol. 24:389–395.

    PubMed  CAS  Google Scholar 

  • Cheon, C.-I., Lee, N.-G., Siddique, A.-B. M., Bal, A. K., and Verma, D. P. S., 1993, Roles of plant homologs of Rab1p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis, EMBO J. 12:4125–4135.

    PubMed  CAS  Google Scholar 

  • Cheon, C., Hong, Z., and Verma, D. P. S., 1994, Nodulin-24 follows a novel pathway for integration into the peribacteroid membrane in soybean root nodules, J. Biol. Chem. 269:6598–6602.

    PubMed  CAS  Google Scholar 

  • Clover, R. H., Kieber, J., and Signer, E. R., 1989, Lipopolysaccharide mutants of Rhizobium meliloti are not defective in symbiosis, J. Bacteriol. 171:3961–3967.

    PubMed  CAS  Google Scholar 

  • Cooper, J. B., and Long, S. R., 1994, Morphogenetic rescue of Rhizobium meliloti nodulation mutants by trans-zeatin secretion, Plant Cell 6:215–225.

    PubMed  CAS  Google Scholar 

  • Datta, D. B., Triplett, E. W., and Newcomb, E. H., 1991, Localization of xanthine dehydrogenase in cowpea root nodules: Implications for the interaction between cellular compartments during ureide biogenesis, Proc. Natl. Acad. Sci. USA 88:4700–4702.

    PubMed  CAS  Google Scholar 

  • Davis, E. O., and Johnston, A. W. B., 1990, Regulatory functions of the 3 nodD genes of Rhizobium leguminosarum biovar phaseoli, Mol. Microbiol. 4:933–941.

    PubMed  CAS  Google Scholar 

  • Day, D., and Copeland L., 1991, Carbon metabolism and compartmentation in nitrogen-fixing legume nodules, Plant Physiol. Biochem. 29:185–201.

    CAS  Google Scholar 

  • Day, D. A., Yang, L.-J. O., and Udardi, M. K., 1990, Nutrient exchange across the peribacteroid membrane of isolated symbiosomes, in Nitrogen Fixation: Achievements and Objectives P. Gresshoff, J. Roth, G. Stacey, and W. E. Newton, eds., pp. 219–226, Chapman & Hall, New York.

    Google Scholar 

  • Dénarié, J., Debellé, F., and Rosenberg, C., 1992, Signaling and host range variation in nodulation, Annu. Rev. Microbiol. 46:497–531.

    PubMed  Google Scholar 

  • Djordjevic, M., Gabrielle, D., and Rolfe, B., 1987a, Rhizobium—the refined parasite of legumes, Annu. Rev. Phytopathol. 25:145–168.

    Google Scholar 

  • Djordjevic, M. A., Redmond, J. W., Batley, M., and Rolfe, B. G., 1987b, Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii, EMBO J. 6:1173–1179.

    PubMed  CAS  Google Scholar 

  • Djordjevic, S. P., Chen, H., Batley, M., Redmond, J. W., and Rolfe, B. G., 1987c, Nitrogen fixation ability of exopolysaccharide synthesis mutants of Rhizobium sp. strain NGR234 and Rhizobium trifolii is restored by addition of homologous exopolysaccharides, J. Bacteriol. 169:53–60.

    PubMed  CAS  Google Scholar 

  • Dockendorff, T., Sharma, A., and Stacey, G., 1994, Identification and characterization of the nolYZ genes of Bradyrhizobium japonicum, Mol. Plant Microbe Interact. 7:173–180.

    PubMed  CAS  Google Scholar 

  • Downie, J. A., 1989, The nodL gene from Rhizobium leguminosarum is homologous to the acetyl transferases encoded by iacA and cysE, Mol. Microbiol. 3:1649–1651.

    PubMed  CAS  Google Scholar 

  • Dylan, T., Ielpi, L., Stanfield, S., Kashyap, L., Douglas, C., Yanofsky, M., Nester, E., Helinski, D. R., and Ditta, G., 1986, Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens, Proc. Natl. Acad. Sci. USA 83:4403–4407.

    PubMed  CAS  Google Scholar 

  • Egli, M. A., Griffith, S. M., Miller, S. S., Anderson, M. A., and Vance, C. P., 1989, Nitrogen assimilating enzyme activities and enzyme protein during development and senescence of effective and plant gene-controlled ineffective alfalfa nodules, Plant Physiol. 91:898–904.

    PubMed  CAS  Google Scholar 

  • Ehrhardt, D. W., Atkinson, E. M., and Long, S. R., 1992, Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors, Science 256:998–1000.

    PubMed  CAS  Google Scholar 

  • Estabrook, E. M., and Sengupta-Gopalan, C., 1991, Differential expression of phenylalanine ammonia-lyase and chalcone synthase during soybean nodule development, Plant Cell 3:299–308.

    PubMed  CAS  Google Scholar 

  • Evans, I. J., and Downie, J. A., 1986, The nodI gene product of Rhizobium leguminosarum is closely related to ATP-binding bacterial transport proteins: Nucleotide sequence analysis of the nodI and nodJ genes, Gene 43:95–101.

    PubMed  CAS  Google Scholar 

  • Faucher, C., Camut, S., Dénarié, J., and Truchet, G., 1989, The nodH and nodQ host range genes of Rhizobium meliloti behave as avirulence genes in R. leguminosarum bv. viciae and determine changes in the production of plant-specific extracellular signals, Mol. Plant-Microbe Interact. 2:291–300.

    Google Scholar 

  • Fearn, J. C., and LaRue, T. A., 1991, A temperature-sensitive nodulation mutant (Sym-5) of Pisum sativum L. Plant Cell Environ. 14:221–227.

    Google Scholar 

  • Finan, T. M., Hirsch, A. M., Leigh, J. A., Johnson, E., Kuldau, G. A., Deegan, S., Walker, G. C., and Signer, E. R., 1985, Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation, Cell 40:869–877.

    PubMed  CAS  Google Scholar 

  • Firmin, J., Wilson, K., Carlson, R., Davies, A., and Downie, J., 1993, Resistance to nodulation of cv. Afghanistan peas is overcome by nodX, which mediates an O-acetylation of the Rhizobium leguminosarum lipo-oligosaccharide nodulation factor, Mol. Microbiol. 10:351–360.

    PubMed  CAS  Google Scholar 

  • Fisher, R. F., and Long, S. R., 1992, Rhizobium-plant signal exchange, Nature 357:655–660.

    PubMed  CAS  Google Scholar 

  • Fisher, R. F., Egelhoff, T. T., Mulligan, J. T., and Long, S. R., 1988, Specific binding of proteins from Rhizobium meliloti cell-free extracts containing NodD to DNA sequences upstream of inducible nodulation genes. Genes Dev. 2:282–293.

    PubMed  CAS  Google Scholar 

  • Forrest, S. I., Verma, D. P. S., and Dhindsa, R. S., 1990, Starch content and activities of starch mobilizing enzymes in effective and ineffective root nodules of soybean, Can. J. Bot. 69:697–701.

    Google Scholar 

  • Fortin, M. G., Zelechowska, M., and Verma, D. P. S., 1985, Specific targeting of membrane nodulins to the bacteroid-enclosing compartment in soybean nodules, EMBO J. 4:3041–3046.

    PubMed  CAS  Google Scholar 

  • Fortin, M., Morrison, N. A., and Verma, D. P. S., 1987, Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment, Nuc. Acids Res. 15:813–824.

    CAS  Google Scholar 

  • Fukuhara, H., Minakawa, Y., Akao, S., and Minamisawa, K., 1994, The involvement of indole-3-acetic acid produced by Bradyrhizobium elkanii in nodule formation, Plant Cell Physiol. 35:1261–1265.

    CAS  Google Scholar 

  • Geelen, D., Mergaert, P., Geremia, R. A., Goormachtig, S., Van Montagu, M., and Holsters, M., 1993, Identification of nodSUIJ genes in nod locus 1 of Azorhizobium caulinodans: Evidence that nodS encodes a methyltransferase involved in Nod factor modification, Mol. Microbiol. 9:145–154.

    PubMed  CAS  Google Scholar 

  • Geremia, R. A., Mergaert, P., Geelen, D., Van Montagu, M., Holsters, M., 1994, The NodC protein of Azorhizobium caulinodans is an N-acetylglucosaminyltransferase, Proc. Natl. Acad. Sci. USA 91:2669–2673.

    PubMed  CAS  Google Scholar 

  • Goodlass, G., and Smith, K. A., 1979, Effect of ethylene on root extension and nodulation of pea (Pisum sativum L.) and white clover (Trifolium repens L.), Plant Soil 51:387–395.

    CAS  Google Scholar 

  • Gordon, A., Thomas, B., and Reynolds, P., 1992, Localization of sucrose synthase in soybean root nodules, New Phytol. 122:35–44.

    CAS  Google Scholar 

  • Gottfert, M., Hitz, S., and Hennecke, H., 1990, Identification of nodS and nodU, two inducible genes inserted between the Bradyrhizobium japonicum nodYABC and nodIJ genes, Mol. Plant-Microbe Interact. 3:308–316.

    PubMed  CAS  Google Scholar 

  • Gresshoff, P. M., and Delves, A. C., 1986, Plant genetic control to symbiotic nodulation and nitrogen fixation in legumes, in A Genetic Approach to Plant Biochemistry (A. D. Blonstein and P. J. King, eds.), pp. 159–206, Springer-Verlag, New York.

    Google Scholar 

  • Grobbelaar, N., Clarke, B., and Hough, M. C., 1971, The nodulation and nitrogen fixation of isolated roots of Phaseolus vulgaris L, Plant Soil (Special Issue) 1971:215–223.

    Google Scholar 

  • Grosskopf, E., Ha, D. T. C., Wingender, R., Rohrig, H., Szecsi, J., Kondorosi, E., Schell, J., and Kondorosi, A., 1993, Enhanced levels of chalcone synthase in alfalfa nodules induced by a Fix− mutant of Rhizobium meliloti, Mol. Plant-Microbe Interact. 6:173–181.

    CAS  Google Scholar 

  • Halverson, L. J., and Stacey, G., 1986, Signal exchange in plant-microbe interactions, Microbiol. Rev. 50:193–225.

    PubMed  CAS  Google Scholar 

  • Hartwig, U. A., and Phillips, D. A., 1991, Release and modification of nod gene-inducing fla-vonoids from alfalfa seed, Plant Physiol. 95:804–807.

    PubMed  CAS  Google Scholar 

  • Heidstra, R., Yang, W. C., Yalcin, Y., Peck, S., Emons, A. M., van Kammen, A., and Bisseling, T., 1997, Ethylene provides positional information on cortical cell division but is not involved in nod factor-induced root hair tip growth in Rhizobium-legume interaction, Development 124: 1781–1787.

    PubMed  CAS  Google Scholar 

  • Hirel, B., Bouet, C., King, B., Layzell, D., Jacobs, F., and Verma, D. P. S., 1987, Glutamine synthetase genes are regulated by ammonia provided externally or by symbiotic nitrogen fixation, EMBO J. 6:1167–1171.

    PubMed  CAS  Google Scholar 

  • Hirsch, A. M., Bang, M., and Ausubel, F. M., 1983, Ultrastructural analysis of ineffective nodules formed by nif:Tn5 mutants of Rhizobium meliloti, J. Bacteriol. 155:367–380.

    PubMed  CAS  Google Scholar 

  • Hirsch, A., Bhuvaneswari, T., Torrey, J., and Bisseling, T., 1989, Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors, Proc. Natl. Acad. Sci. USA 86:1244–1248.

    PubMed  CAS  Google Scholar 

  • Honma, M. A., and Ausubel, F. M., 1987, Rhizobium meliloti has three functional copies of the nodD symbiotic regulatory gene, Proc. Natl. Acad. Sci. USA 84:8558–8562.

    PubMed  CAS  Google Scholar 

  • Horvath, B., Bachern, C. W. B., Schell, J., and Kondorosi, A., 1987, Host-specific regulation of nodulation genes in Rhizobium is mediated by a plant-signal, interacting with the nodD gene product, EMBO J. 6:841–848.

    PubMed  CAS  Google Scholar 

  • Horvath, B., Heidstra, R., Lados, M., Moerman, M., Spaink, H. P., Promé, J. C., VanKaman, A., and Bisseling, T., 1993, Lipo-oligosaccharides of Rhizobium induce infection-related early nodulin gene expression in pea root hairs, Plant J. 4:727–733.

    PubMed  CAS  Google Scholar 

  • Hu, Chien-an, 1991, Aerobic status of nodule cells as revealed by ADH-GUS gene introduction in transgenic Lotus corniculatus, Master’s thesis, Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Hungria, M., Joseph, C. M., and Phillips, D. A., 1991, Anthocyanidins and flavonols, major nod gene inducers from seeds of a black seeded common bean (Phaseolus vulgaris L), Plant Physiol. 97:751–758.

    PubMed  CAS  Google Scholar 

  • Hurst, D. T., Griffiths, E., and Vayianos, C., 1985, Inhibition of uricase by pyrimidine and purine drugs, Clin. Biochem. 18:247–251.

    PubMed  CAS  Google Scholar 

  • Ielpi, L., Dylan, T., Ditta, G. S., Helinski, D. R., and Stanfield, S. W., 1990, The ndvB locus of Rhizobium meliloti encodes a 319-kDa protein involved in the production of β-(1→2)-glucan, J. Biol. Chem. 265:2843–2851.

    PubMed  CAS  Google Scholar 

  • Ito, T., Shiraishi, H., Okada, K., and Shimura, Y., 1994, Two amidophosphoribosyltransferase genes of Arabidopsis thaliana expressed in different organs, Plant Mol. Biol. 26:529–533.

    PubMed  CAS  Google Scholar 

  • John, M., Rohrig, H., Schmidt, J., Wieneke, U., and Schell, J., 1993, Rhizobium, NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase, Proc. Natl. Acad. Sci. USA 90:625–629.

    PubMed  CAS  Google Scholar 

  • Katinakis, P., and Verma, D. P. S., 1985, Nodulin-24 gene of soybean codes for a peptide of the peribacteroid membrane and was generated by a tandem duplication of a sequence resembling an insertion element, Proc. Natl. Acad. Sci. USA 82:4157–4161.

    PubMed  CAS  Google Scholar 

  • Kim, J. H., and Verma, D. P. S., 1996, Induction and characterization of glutamine phosphoribosylpyrophosphate amidotransferase gene promoter from soybean, Plant Physiol. Suppl., in press.

    Google Scholar 

  • Kim, J. H., Humphreys, J. M., and Verma, D. P. S., 1985a, Regulation of ureide biosynthesis genes in soybean root nodules, Plant Physiol. 108S:72.

    Google Scholar 

  • Kim, J. H., Delauney, A. J., and Verma, D. P. S., 1995b, Control of de novo purine biosynthesis genes in ureide-producing legumes: Induction of glutamine phosphoribosylpyrophosphate amidotransferase gene and characterization of its cDNA from soybean and Vigna, Plant J. 7:77–86.

    PubMed  CAS  Google Scholar 

  • Kinnback, A., Mellor, R., and Werner, D., 1987, α-Mannosidase II isoenzyme in the peribacteroid space of Glycine max root nodules, J. Exp. Bot. 38:1373–1377.

    CAS  Google Scholar 

  • Klein, S., Walker, G. C., and Signer, E. R., 1988, All nod genes of Rhizobium meliloti are involved in alfalfa nodulation by exo mutants, J. Bacteriol. 170:1003–1006.

    PubMed  CAS  Google Scholar 

  • Kohl, D. H., Schubert, K. R., Carter, M. B., Hagedorn, C. H., and Shearer, G., 1988, Proline metabolism in N2-fixing root nodules: Energy transfer and regulation of purine synthesis, Proc. Natl. Acad. Sci. USA 85:2036–2040.

    PubMed  CAS  Google Scholar 

  • Kondorosi, A., Schultze, M., Savoure, A., Hoffmann, B., Dudits, D., Pierre, M., Allison, L., Bauer, P., Kiss, G., and Kondorosi, A., 1993, Control of nodule induction and plant cell growth by Nod factors, in Advances in Molecular Genetics of Plant-Microbe Interactions (E. W. Nester and D. P. S. Verma, eds.), pp. 143–150, Kluwer, Dordrecht.

    Google Scholar 

  • Lee, N. G., Stein, B., Suzuki, H., and Verma, D. P. S., 1993, Antisense expression of nodulin-35 RNA in Vigna aconitifolia roof nodules retards peroxisome development and the availability of nitrogen to the plant, Plant J. 3:599–606.

    PubMed  CAS  Google Scholar 

  • Leigh, J. A., and Walker, G. C., 1994, Exopolysaccharides of Rhizobium: Synthesis, regulation and symbiotic function, Trends Genet. 10:63–67.

    PubMed  CAS  Google Scholar 

  • Leigh, J. A., Signer, E. R., and Walker, G. C., 1985, Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules, Proc. Natl. Acad. Sci. USA 82:6231–6235.

    PubMed  CAS  Google Scholar 

  • Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Promé, J. C., and Dénarié, J., 1990, Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal, Nature 344:781–784.

    PubMed  CAS  Google Scholar 

  • Li, Y., Ou Yang, L.-J., Quinnel, R. G., Udvardi, M. K., and Day, D. A., 1990, Malate transport and metabolism in infected cells of soybean nodules, in Nitrogen Fixation: Achievements and Objectives, P. M. Gresshoff, L. E. Roth, G. Stacey, and W. E. Newton, eds.), p. 753, Chapman and Hall, New York.

    Google Scholar 

  • Libbenga, K. R., Van Iren, F., Bogers, R. J., and Schraag-Lamers, M. F., 1973, The role of hormones and gradients in the initiation of cortex proliferation and nodule formation in Pisum sativum L, Planta 114:29–39.

    CAS  Google Scholar 

  • Ligero, F., Caba, J. M., Lluch, C., and Olivares, J., 1991, Nitrate inhibition of nodulation can be overcome by the ethylene inhibitor aminoethoxyvinylglycine, Plant Physiol. 97:1221–1225.

    PubMed  CAS  Google Scholar 

  • Mackenzie, C. R., and Jordon, D. C., 1974, Ultrastructure of root nodules formed by ineffective strains of Rhizobium meliloti, Can. J. Microbiol. 20:755–758.

    PubMed  CAS  Google Scholar 

  • Manen, J. F., Simon, P., Vanslooten, J. C., Osteras, M., Frutiger, S., and Hughes, G. J., 1991, A nodulin specifically expressed in senescent nodules of winged bean is a protease inhibitor, Plant Cell 3:259–270.

    PubMed  CAS  Google Scholar 

  • Marie, C., Barny, M. A., and Downie, J. A., 1992, Rhizobium leguminosarum has two glucosamine synthases, glmS and nodM, required for nodulation and development of nitrogen-fixing nodules, Mol. Microbiol. 6:843–851.

    PubMed  CAS  Google Scholar 

  • McClure, P. R., and Israel, D. W., 1979, Transport of nitrogen in the xylem of soybean plants, Plant Physiol. 64:411–416.

    PubMed  CAS  Google Scholar 

  • McDermott, T., Griffith, S., Vance, C., and Graham, P., 1989, Carbon metabolism in Bradyrhizobium japonicum bacteroids, FEBS Microbiol. Rev. 63:327–340.

    CAS  Google Scholar 

  • McNeil, D. L., and LaRue, T. A., 1984, Effect of nitrogen source on ureides in soybean, Plant Physiol. 74:227–232.

    PubMed  CAS  Google Scholar 

  • Meeks, J. C., Wolk, C. P., Schilling, N., Shaffer, P. W., Avissar, Y., and Chien, W. S., 1978, Initial organic products of fixation of [13N]dinitrogen by root nodules of soybean (Glycine max), Plant Physiol. 61:980–983.

    PubMed  CAS  Google Scholar 

  • Messenger, L. J., and Zalkin, H., 1979, Glutamine phosphoribosylpyrophosphate amidotransferase from Escherichia coli, J. Biol. Chem. 254:3382–3392.

    PubMed  CAS  Google Scholar 

  • Miao, G. H., Hirel, B., Marsolier, M. C., Ridge, R. W., and Verma, D. P. S., 1991, Ammonia-regulated expression of a soybean gene encoding cytosolic glutamine synthetase in transgenic Lotus corniculatus, Plant Cell 3:11–22.

    PubMed  CAS  Google Scholar 

  • Miao, G. H., Hong, Z., and Verma, D. P. S., 1992, Topology and phosphorylation of soybean nodulin-26, an intrinsic protein of the peribacteroid membrane, J. Cell Biol. 118:481–490.

    PubMed  CAS  Google Scholar 

  • Morrison, N., and Verma, D. P. S., 1987, A block in the endocytosis of Rhizobium allows cellular differentiation in nodules but affects the expression of some peribacteroid membrane nodulins, Plant Mol. Biol. 9:185–196.

    CAS  Google Scholar 

  • Muller, M., Kraupp, M., Chiba, P., and Rumpold, H., 1982, Regulation of purine uptake in normal and neoplastic cells, Adv. Enzyme Regul. 21:239–256.

    Google Scholar 

  • Mulligan, J., and Long, S., 1985, Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD, Proc. Natl. Acad. Sci. USA 82:1–5.

    Google Scholar 

  • Newcomb, E. H., and Tandon, S. R., 1981, Uninfected cells of soybean root nodules: Ultrastructure suggests key role in ureide production, Science 212:1394–1396.

    PubMed  CAS  Google Scholar 

  • Newcomb, E. H., Tandon, Sh. R., and Kowal, R. R., 1985, Ultrastructural specialization for ureide production in uninfected cells of soybean root nodules, Protoplasma 125:1–12.

    Google Scholar 

  • Nguyen, T., Zelechowska, M., Foster, V., Bergmann, H., and Verma, D. P. S., 1985, Primary structure of the soybean nodulin-35 gene encoding uricase II localized in the peroxisomes of uninfected cells of nodules, Proc. Natl. Acad. Sci. USA 82:5040–5044.

    PubMed  CAS  Google Scholar 

  • Noel, K. D., 1992, Rhizobial polysaccharides required in symbioses with legumes, in Molecular Signals in Plant-Microbe Communications (D. P. S. Verma, ed.), pp. 341–357, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Noel, K. D., Vandenbosch, K. A., and Kalpaca, B., 1986, Mutations in Rhizobium phaseoli that lead to arrested development of infection threads, J. Bacteriol. 168:1392–1401.

    PubMed  CAS  Google Scholar 

  • O’Connell, D. P., Araujo, R. S., and Handelsman, J., 1990, Exopolysaccharide-deficient mutants of Rhizobium spp strain CIAT899 induce chlorosis in common bean (Phaseolus vulgaris), Mol. Plant-Microbe Interact. 3:424–428.

    Google Scholar 

  • Orgambide, G. G., Philip-Hollingsworth, S., Hollingsworth, R. I., and Dazzo, F. B., 1994, Flavone-enhanced accumulation and symbiosis-related biological activity of a diglycosyl diacylglycerol membrane glycolipid from Rhizobium leguminosarum biovar trifolii, J. Bacteriol. 176:4338–4347.

    PubMed  CAS  Google Scholar 

  • Peters, N. K., and Crist-Estes, D. K., 1989, Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine, Plant Physiol. 91:690–693.

    PubMed  CAS  Google Scholar 

  • Peters, N., and Verma, D., 1990, Phenolic compounds as regulators of gene expression in plant-microbe interaction, Mol. Plant-Microbe Interact. 3:4–8.

    PubMed  CAS  Google Scholar 

  • Petrovics, G., Putnoky, P., Reuhs, B., Kim, J., Thorp, T. A., Noel, K. D., Carlson, R. W., and Kondorosi, A., 1993, The presence of a novel type of surface polysaccharide in Rhizobium meliloti requires a new fatty acid synthase-like gene cluster involved in symbiotic nodule development, Mol. Microbiol. 8:1083–1094.

    PubMed  CAS  Google Scholar 

  • Philip-Hollingsworth, S., Hollingsworth, R. I., and Dazzo, F. B., 1991, N-Acetylglutamic acid: An extracellular nod signal of Rhizobium trifolii ANU843 that induces root hair branching and nodule-like primordia in white clover roots, J. Biol. Chem. 266:16854–16858.

    PubMed  CAS  Google Scholar 

  • Priefer, U. B., 1989, Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae Vf39, J. Bacteriol. 171:6161–6168.

    PubMed  CAS  Google Scholar 

  • Prinsen, E., Chauvaux, N., Schmidt, J., John, M., Wieneke, U., Degreef, J., Schell, J., and Vanonckelen, H., 1991, Stimulation of indole-3-acetic acid production in Rhizobium by fla-vonoids, Ind. J. Exp. Biol. 29:184–186.

    Google Scholar 

  • Punier, A., Arnold, W., Buendia-Claveria, A., Kapp, D., Keller, M., Niehaus, L., Quant, J., Roxlau, A., and Weng, W., 1991, The role of Rhizobium meliloti exopolysaccharides EPSI and EPSII in the infection process of alfalfa nodules, in Advances in Molecular Genetics of Plant-Microbe Interactions (H. Hennecke and D. P. S. Verma, eds.), pp. 189–194, Kluwer, Dordrecht.

    Google Scholar 

  • Rawsthorne, S., and LaRue, T., 1986, Preparation and properties of mitochondria from cowpea nodules, Plant Physiol. 81:1092–1096.

    PubMed  CAS  Google Scholar 

  • Reibach, P., and Streeter, J., 1983, Metabolism of 14C-labeled photosynthate and distribution of enzymes of glucose metabolism in soybean nodules, Plant Physiol. 72:634–640.

    PubMed  CAS  Google Scholar 

  • Relic, B., Perret, X., Estrada-Garcia, M. T., Kopcinska, J., Golinowski, W., Krishnan, H. B., Pueppke, S. G., and Broughton, W. J., 1994, Nod-factors of Rhizobium are a key to the legume door, Mol. Microbiol. 13:171–178.

    PubMed  CAS  Google Scholar 

  • Reuhs, B., Kim, J., Badgett, A., and Carlson, R., 1994, Production of cell-associated polysaccharides of Rhizobium fresii USDA205 is modulated by apigenin and host root extract. Mol. Plant-Microbe Interact. 7:240–247.

    PubMed  CAS  Google Scholar 

  • Reynolds, P. H. S., Boland, M. J., Blevins, D. G., Schubert, K. P., and Randall, D. D., 1982, Enzymes of amide and ureide biogenesis in developing soybean nodules, Plant Physiol. 69:1334–1338.

    PubMed  CAS  Google Scholar 

  • Reynolds, P. H. S., Blevins, D. G., and Randall, D. D., 1984, 5-Phosphoribosylpyrophosphate amidotransferase from soybean root nodules: Kinetic and regulatory properties, Arch. Biochem. Biophys. 229:623–631.

    PubMed  CAS  Google Scholar 

  • Roche, P., Debelle, F., Maillet, F., Lerouge, P., Faucher, C., Truchet, G., Dénarié, J., and Promé, J. C., 1991, Molecular basis of symbiotic host specificity in Rhizobium meliloti—nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals, Cell 67:1131–1143.

    PubMed  CAS  Google Scholar 

  • Rohrig, H., Schmidt, J., Wieneke, U., Kondorosi, E., Barlier, I., Schell, J., and John, M., 1994, Biosynthesis of lipooligosaccharide nodulation factors: Rhizobium NodA protein is involved in N-acylation of the chitooligosaccharide backbone, Proc. Natl. Acad. Sci. USA 91:3122–3126.

    PubMed  CAS  Google Scholar 

  • Rossen, L., Shearman, C., Johnston, A., and Downie, J., 1985, The nodD gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudate induces the nodABC genes, EMBO J. 4:3369–3373.

    PubMed  CAS  Google Scholar 

  • Sadowsky, M., Olson, E., Foster, V., Kosslak, R., and Verma, D. P. S., 1988, Two host-inducible genes of Rhizobium fredii and characterization of the inducing compound, J. Bacteriol. 170:171–178.

    PubMed  CAS  Google Scholar 

  • Sanjuan, J., Grob, P., Göttfert, M., Hennecke, H., and Stacey, G., 1994, NodW is essential for full expression of the common nodulation genes in Bradyrhizobium japonicum, Mol. Plant-Microbe Interact. 7:364–369.

    CAS  Google Scholar 

  • Schlaman, H. R., Spaink, H. P., Okker, R. J., and Lugtenberg, B. J., 1989, Subcellular localization of the nodD gene product in Rhizobium leguminosarum, J. Bacteriol. 171:4686–4693.

    PubMed  CAS  Google Scholar 

  • Schlaman, H. R. M., Okker, R. J. H., and Lugtenberg, B. J. J., 1990, Subcellular localization of the Rhizobium leguminosarum nodI gene product, J. Bacteriol. 172:5486–5489.

    PubMed  CAS  Google Scholar 

  • Schmidt, P. E., Parniske, M., and Werner, D., 1992, Production of the phytoalexin glyceollin-I by soybean roots in response to symbiotic and pathogenic infection, Botan. Acta 105:18–25.

    CAS  Google Scholar 

  • Schnorr, K. M., Nygaard, P., and Laloue, M., 1994, Molecular characterization of Arabidopsis thaliana cDNAs encoding three purine biosynthetic enzymes, Plant J. 6:113–121.

    PubMed  CAS  Google Scholar 

  • Schubert, K. R., 1981, Enzymes of purine biosynthesis and catabolism in Glycine max, Plant Physiol. 68:1115–1122.

    PubMed  CAS  Google Scholar 

  • Schubert, K. R., 1986, Products of biological nitrogen fixation in higher plants: Synthesis, transport, and metabolism, Annu. Rev. Plant Physiol. 37:539–574.

    CAS  Google Scholar 

  • Schubert, K. R., and Boland, M. J., 1990, The ureides, in The Biochemistry of Plants, Vol. 16 (B. J. Miflin and P. J. Lea, eds.), pp. 197–281, Academic Press, New York.

    Google Scholar 

  • Schultze, M., and Kondorosi, A., 1996, The role of lipochitooligosaccarides in root nodule organogenesis and plant cell growth, Current Opin. Genet. Dev. 6:631–638.

    CAS  Google Scholar 

  • Schwedock, J., and Long, S. R., 1990, ATP sulphurylase activity of the nodP and nodQ gene products of Rhizobium meliloti, Nature 348;644–647.

    PubMed  CAS  Google Scholar 

  • Scott, D. B., Farnden, K. J. F., and Robertson, J. G., 1976, Ammonia assimilation in lupin nodules, Nature 263:703–705.

    CAS  Google Scholar 

  • Selker, J. M. L., and Newcomb, E. H., 1985, Spatial relationships between uninfected and infected cells in root nodules of soybean, Planta 165:446–454.

    Google Scholar 

  • Senecoff, J. F., and Meagher, R. B., 1993, Isolating the Arabidopsis Thaliana genes for de novo purine synthesis by suppression of Escherichia coli mutants, Plant Physiol. 102:387–399.

    PubMed  CAS  Google Scholar 

  • Shelp, B. J., Atkins, C. A., Storer, P. J., and Canvin, D. T., 1983, Cellular and subcellular organization of pathways of ammonia assimilation and ureide synthesis in nodules of cowpea [Vigna unguiculata (L.) Walp.] Arch. Biochem. Biophysiol. 224:429–441.

    CAS  Google Scholar 

  • Sonnewald, U., Lerchl, J., Zrenner, R., and Frommer, W., 1994, Manipulation of sinksource relations in transgenic plants, Plant Cell Environ. 17:649–658.

    CAS  Google Scholar 

  • Spaink, H. P., Wijffelman, C. A., Pees, E., Okker, R. J. H., and Lugtenberg, B. J. J., 1989, Localization of functional regions of the Rhizobium nodD product using hybrid nodD genes, Plant Mol. Biol. 12:59–73.

    CAS  Google Scholar 

  • Spaink, H. P., Sheeley, D. M., vanBrussel, A. A. N., Glushka, J., York, V. N., and Lugtenberg, B. J. J., 1991, A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium, Nature 354:125–129.

    PubMed  CAS  Google Scholar 

  • Stacey, G., Luka, S., Sanjuan, J., Banfalvi, Z., Niewkoop, A. J., Chun, J. Y., Forsberg, L. S., and Carlson, R., 1994, nodZ, a unique host-specific nodulation gene, is involved in the fucosylation of the lipooligosaccharide nodulation signal of Bradyrhizobium japonicum, J. Bacteriol. 176:620–633.

    PubMed  CAS  Google Scholar 

  • Stanfield, S. W., Ielpi, L., O’Brochta, D., Helinski, D. R., and Ditta, G. S., 1988, The ndvA gene product of Rhizobium meliloti is required for β-(1→2) glucan production and has homology to the ATP-binding export protein HlyB, J. Bacteriol. 170:3523–3530.

    PubMed  CAS  Google Scholar 

  • Stokkermans, T. J. W., and Peters, N. K., 1994, Bradyrhizobium elkanii lipooligosaccharide signals induce complete nodule structures on Glycine soja, Planta 193:413–420.

    PubMed  CAS  Google Scholar 

  • Streeter, J. G., 1980, Carbohydrates in soybean nodules. II Distribution of compounds in seedlings during the onset of nitrogen fixation, Plant Physiol. 66:471–476.

    PubMed  CAS  Google Scholar 

  • Streeter, J. G., 1991, Transport and metabolism of carbon and nitrogen in legume nodules, Adv. Bot. Research 18:129–187.

    CAS  Google Scholar 

  • Sturtevant, D., and Taller, B., 1989, Cytokinin production by Bradyrhizobium japonicum, Plant Physiol. 89:1247–1252.

    PubMed  CAS  Google Scholar 

  • Suganuma, N., Kitou, M., and Yamaoto, Y., 1987, Carbon metabolism in relation to cellular organization of soybean root nodules and respiration of mitochondria aided by leghemoglobin, Plant Cell Physiol. 28:113–122.

    CAS  Google Scholar 

  • Sutton, J., Lea, E., and Downie, J., 1994, The nodulation-signaling protein NodO from Rhizobium leguminosarum biovar viciae forms ion channels in membranes, Proc. Natl. Acad. Sci. USA 91:9990–9994.

    PubMed  CAS  Google Scholar 

  • Taller, B. J., and Sturtevant, D. B., 1991, Cytokinin production by rhizobia, in Advances in Molecular Genetics of Plant-Microbe Interactions (H. Hennecke and D. P. S. Verma, eds.), pp. 215–221, Kluwer, Dordrecht.

    Google Scholar 

  • Thummler, F., and Verma, D., 1987, Nodulin-100 of soybean is the subunit of sucrose synthase regulated by the availability of free heme in nodules, J. Biol. Chem. 262:14730–14736.

    PubMed  CAS  Google Scholar 

  • Tikhonovich, I. A., Borisov, A. Y., Chvabauskene, I. A., Kamardin, N. N., Kravchenko, L. V., Lebsky, V. K., Minchin, F., Morzhina, E. V., Romanov, V. I., Skot, L., Tchetokova, S. A., and Tsyganov, V. E., 1995, Plant genetical control at the crucial steps of symbiosis, Nitrogen Fixation: Fundamentals and Applications (I. A. Tikhonovich et al., eds.), pp. 461-466, Dordrecht, The Netherlands.

    Google Scholar 

  • Truchet, G., Barker, D. G., Camut, S., Debilly, F., Vasse, J., and Huguet, T., 1989, Alfalfa nodulation in the absence of Rhizobium, Mol. Gen. Genet. 219:65–68.

    CAS  Google Scholar 

  • Vance, C., and Heichel, G., 1991, Carbon in N2 fixation limitations or exquisite adaptation, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:373–392.

    CAS  Google Scholar 

  • van de Sande, K., Pawlowski, K., Czaja, I., Weineke, U., Schell, J., Schmidt, R., Waiden, R., Matvienko, M., Wellink, J., van Kammen, A., Franssen, H., and Bisseling, T., 1996, Modification of phytohormone response by a peptide encoded by ENOD40 of legumes and a nonlegume, Science 273:370–373.

    PubMed  Google Scholar 

  • Vasse, J., de Billy, F., Camut, S., and Truchet, G., 1993, Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules, J. Bacteriol. 172:4296–4306.

    Google Scholar 

  • Verma, D. P. S., 1989, Plant genes involved in carbon and nitrogen assimilation in root nodules, in Plant Nitrogen Metabolism (J. E. Poulton, J. T. Romeo, and E. E. Conn, eds.), pp. 43–63, Plenum Press, New York.

    Google Scholar 

  • Verma, D. P. S., and Nadler, K., 1984, Legume-Rhizobium symbiosis: Host’s point of view, in Genes Involved in Microbe-Plant Interactions (D. P. S. Verma and T. Hohn, eds.), pp. 57–93, Springer-Verlag, New York.

    Google Scholar 

  • Verma, D. P. S., 1992, Signals in root nodule organogenesis and endocytosis of Rhizobium, Plant Cell 4:373–382.

    PubMed  CAS  Google Scholar 

  • Verma, D. P. S., Kazazian, V., Zogbi, V., and Bal, A. K., 1978, Isolation and characterization of the membrane envelope enclosing the bacteroids in soybean root nodules, J. Cell Biol. 78:919–936.

    PubMed  CAS  Google Scholar 

  • Vijn, I., Yang, W. C., Pallisgard, N., Ostergaard-Jensen, E., van Kammen, A., and Bisseling, T., 1995, VsENOD5, VsENOD12 and VsENOD40 expression during Rhizobium-induced nodule formation on Vicia sativa roots, Plant Mol. Biol. 28:1111–1119.

    PubMed  CAS  Google Scholar 

  • Werner, D., Morschel, E., Korat, R., Meilor, R., and Bassarab, S., 1984, Lysis of bacteroids in the vicinity of the host cell nucleus in an ineffective (fix−) root nodule of soybean (Glycine max), Planta 16:8–16.

    Google Scholar 

  • Werner, D., Mellor, R., Hahan, M., and Grisbach, H., 1985, Soybean root response to symbiotic infection glyceollin I accumulation in an ineffective type of soybean nodules with an early loss of the peribacteroid membrane, Z. Naturforsch. 40:179–181.

    Google Scholar 

  • Wood, E. A., Butcher, G. W., Brewin, N. J., and Kannenberg, E. L., 1980, Genetic derepression of a developmentally regulated lipopolysaccharide antigen from Rhizobium leguminosarum 3841, J. Bacteriol 171:4545–4555.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Verma, D.P.S. (1998). Developmental and Metabolic Adaptations during Symbiosis between Legume Hosts and Rhizobia. In: Biswas, B.B., Das, H.K. (eds) Plant-Microbe Interactions. Subcellular Biochemistry, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1707-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1707-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1709-6

  • Online ISBN: 978-1-4899-1707-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics