Skip to main content

Heterostructure Field-Effect Transistors

  • Chapter
Physics of High-Speed Transistors

Part of the book series: Microdevices ((MDPF))

Abstract

William Shockley first proposed a heterojunction device [1] and in the same year Gubanov [2] began examining heterojunction theory. On the heels of these appeared many works, a number of monographs (see, e.g., [3–6]), and several international conferences dealing with the physics of heterojunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Shockley, U. S. Patent No. 2,569,347 (1951).

    Google Scholar 

  2. A. I. Gubanov, “Theory of the junction of two semiconductors having one type of conductivity,” ZhTF, 21, No. 3, 304–315 (1951); “Toward a theory of junction phenomena in semiconductors,” ZhTF, 22, No. 5, 729-735 (1952).

    Google Scholar 

  3. R. L. Anderson, “Experiments on Ge-GaAs heterojunctions,” Solid State Electron., 5, 341–351 (1962).

    ADS  Google Scholar 

  4. Zh. I. Alferov, “Heterojunctions in semiconductor electronics in the near future,” in: Physics Today and Tomorrow. Ser. Modern Trends in Scientific Development, [in Russian], Nauka, Leningrad (1973) pp. 61–89.

    Google Scholar 

  5. Proc. Intern. Conf. on Semiconductor Heterojunctions. Budapest, October, 1970, Vol. II. Academia Kiado, Budapest (1971).

    Google Scholar 

  6. Ya. A. Fedotov, V. S. Zased, and É. A. Matson, “Prospects and problems in semiconductor electronics,” in: Semiconductor Devices and Their Application, No. 25, Soviet Radio, Moscow (1971), pp. 102-127.

    Google Scholar 

  7. R. Dingle, “Festkorper problème XV,” in: Advances in Physics, Pergamon Viewig, Munster (1975) p. 21.

    Google Scholar 

  8. A. J. Hill and P. H. Ladbrooke, “Dependence of conduction-band discontinuity on aluminium mode fraction in GaAs/AlGaAs heterojunctions,” Electron. Lett., 22, No. 4, 218–220 (1986).

    ADS  Google Scholar 

  9. H. Kressel and J. K. Butler, Semiconductor Lasers and Heterojunction LEDs, Academic Press, New York (1977).

    Google Scholar 

  10. R. Zallen and W. Paul, “Effect of pressure of interband reflectivity spectra of germanium and related semiconductors,” Phys. Rev., 155, 703 (1976).

    ADS  Google Scholar 

  11. A. J. Matulionis, J. K. Požela, and V. J. Juciene, “The intervalley junction in semiconductors,” Lit. Fiz. Sb., 14, No. 6, 907–917 (1974).

    Google Scholar 

  12. M. Shur, GaAs Devices and Circuits, Plenum Press, New York—London (1987).

    Google Scholar 

  13. A. A. Kal’fa and A. S. Tager, “Selectively-doped heterojunctions and their application in microwave field-effect transistors,” in: Élektronnaya Tekhnika. Ser. Élektronika SVCh, No. 12(348), 26-38 (1982).

    Google Scholar 

  14. T. J. Drummond, W. T. Masselink, and H. Morkoç, “Modulation-doped GaAs/ (Al, Ga)As heterojunction field-effect transistors: MODFETs,” Proc. IEEE, 74, No. 6, 773–822 (1986).

    ADS  Google Scholar 

  15. A. A. Kal’fa, “Selectively-doped heterojunction field-effect transistors. The current status and prospects for development,” Élektronnaya Tekhnika. Ser. Élektronika SVCh, No. 9(403), 33-47 (1987).

    Google Scholar 

  16. K. Hess, “Lateral transport in superlattices,” J. Phys., 42, suppl. 10, C7–3 (1981).

    Google Scholar 

  17. G. Weimann and W. Schlapp, “Molecular beam epitaxial growth and transport properties of modulation-doped AlGaAs—GaAs heterostructures,” Appl. Phys. Lett., 46, No. 4, 411–413 (1985).

    ADS  Google Scholar 

  18. P. M. Solomon and H. Morkoç, “Modulation-dopedGaAs/AlGaAsheterojunction field-effect transistors (MODFETs), ultrahigh-speed device for supercomputers,” IEEE Trans. Electron Dev., ED-31, No. 8, 1015–1027 (1984).

    ADS  Google Scholar 

  19. R. Dingle, “New high-speed III–V devices for integrated circuits,” IEEE Trans. Electron Dev., ED-31, No. 11, 1662–1667 (1984).

    ADS  Google Scholar 

  20. M. Inoue, “Hot electron transport in quantum wells,” Superlattices and Microstructures, 1, No. 5, 433–440 (1985).

    Google Scholar 

  21. K. Von Klitzing and G. Ebert, “The quantum Hall effect,” Physica, 117B and 118B, 682–687 (1983).

    Google Scholar 

  22. D. Delegebeaudeuf and N. T. Linh, “Metal—(n) AlGaAs—GaAs two-dimensional electron gas FET,” IEEE Trans. Electron Dev., ED-29, No. 6, 955–960 (1982).

    Google Scholar 

  23. K. Lee, M. Shur, T. J. Drummond, et al., “Design and fabrication of high transconductance modulation-doped (AlGa)As/GaAS FETs,” J. Vac. Sci. Technol., B1, No. 2, 186–189 (1983).

    Google Scholar 

  24. B. Vintner, “Phonon-limited mobility in GaAlAs/GaAs heterostructures,” Appl. Phys. Lett., 45, No. 5, 581–583 (1984).

    ADS  Google Scholar 

  25. K. Miyatsuji, H. Hihara, and C. Hamaguchi, “Single quantum well transistor with modulation doped AlGaAs/GaAs/AlGaAs structures,” Superlattices and Microstructures, 1, No. 1, 43–47 (1985).

    ADS  Google Scholar 

  26. C. Hamaguchi, K. Miyatsuji, and H. Hihara, “A proposal of single quantum well transistor (SQWT)-self-consistent calculations of 2D electrons in a quantum well with external voltage,” Jpn. J. Appl. Phys., 23, No. 3, L132–L134 (1984).

    ADS  Google Scholar 

  27. H. Kano, Y. Tanaka, N. Sawaki, et al., “Negative differential resistance device built in a biwell GaAs/AlGaAs superlattice,” J. Cryst. Growth, 81, 144–148 (1987).

    ADS  Google Scholar 

  28. S. Das Sarma, J. K. Jain, and R. Jalabert, “Hot-electron relaxation in GaAs quantum wells,” Phys. Rev. B., 37, No. 3, 1228–1230 (1988).

    ADS  Google Scholar 

  29. W. T. Masselink, N. Braslau, W. I. Wang, et al., “Electron velocity and negative differential mobility in AlGaAs/GaAs modulation-doped heterostructures,” Appl Phys. Lett., 51, No. 19, 1533–1535 (1987).

    ADS  Google Scholar 

  30. S. Muto, S. Hiyamizu, and N. Yokoyama, “Transport characteristics in heterostructure devices,” in: High-Speed Electronics, B. Källbäck, and H. Beneking (eds.), Proc. Int. Conf., Stockholm, Sweden, August7-9, 1986. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo (1986) pp. 72-78.

    Google Scholar 

  31. K. Lee, M. S. Shur, T. J. Drummond, et al., “Low field mobility of 2-D electron gas in modulation doped AlxGa l-x As/GaAs layers,” J. Appl. Phys., 54, No. 11, 6432–6438 (1983).

    ADS  Google Scholar 

  32. S. Hyomizu, J. Saito, K. Nambu, et al., “Improved electron mobility higher than 106 cm2/V · s selectively doped GaAs/N-AlGaAs heterostructures grown by MBE,” Jpn. J. Appl. Phys. (Letters, Pt. 2), 22, No. 10, L609–L611 (1983).

    ADS  Google Scholar 

  33. M. Heilblum, E. E. Mendez, and F. Stern, “High mobility electron gas in selectively doped n: AlGaAs/GaAs heterojunctions,” Appl. Phys. Lett., 44, No. 11, 1064–1066 (1984).

    ADS  Google Scholar 

  34. J. H. English, A. C. Gossard, H. L. Stornier, et al., “GaAs structures with electron mobility of 5 × 106cm2/V· s,” Appl. Phys. Lett., 50, No. 25, 1826–1828 (1987).

    ADS  Google Scholar 

  35. C. Chen, S. M. Baier, D. K. Arch, et al., “A new and simple model for GaAs heterojunction FET gate characteristics,” IEEE Trans. Electron Dev., ED-35, No. 5, 570–577 (1988).

    ADS  Google Scholar 

  36. K. Hirakawa and H. Sakaki, “Hot-electron transport in selectively doped n-type AlGaAs/GaAs heterojunctions,” J. Appl. Phys., 63, No. 3, 803–808 (1988).

    ADS  Google Scholar 

  37. H. Sakaki, J. Motohisa, and K. Hirakawa, “Roles of low field mobility and its carrier concentration dependences in high electron mobility transistors and other field effect transistors,” IEEE Electron. Dev. Lett., EDL-9, No. 3, 133–135 (1988).

    ADS  Google Scholar 

  38. D. Fritzsche, “Heterostructures in MODFETs,” Solid State Electron., 30, No. 11, 1183–1195 (1987).

    ADS  Google Scholar 

  39. T. A. Fjedly and L. Johnsen, “Self-consistent theory including nonstationary phenomena for carrier transport in the AlGaAs/GaAs high electron mobility transistor,” J. Appl. Phys., 63, No. 5, 1768–1774 (1988).

    ADS  Google Scholar 

  40. A. A. Kal’fa, “The two-dimensional electron gas in the selectively doped metal-AlxGal-xAs-GaAs structure,” FTP, 20, No. 3, 468–471 (1986).

    Google Scholar 

  41. A. A. Kal’faand A. S. Tager, “Hot electrons in selectively doped heterostructures. A review,” FTP, 21, No. 8, 1353–1363 (1987).

    Google Scholar 

  42. M. H. Weiler and Y. Ayasli, “DC and microwave models for AlxGal-xAs/GaAs high electron mobility transistors,” IEEE Trans. Electron Dev., ED-31, No. 12, 1854–1864 (1984).

    ADS  Google Scholar 

  43. G. Holz and Ch. Schnittler, “Calculation of the electronic properties of a high electron mobility transistor (I),” Phys. Status Solidi (a), 97, No. 2, 635–644 (1986).

    ADS  Google Scholar 

  44. Ch. S. Chang and H. R. Fetterman, “An analytic model for high-electron-mobility transistors,” Solid State Electron., 30, No. 5, 485–491 (1987).

    ADS  Google Scholar 

  45. H. Hida, T. Itoh, and K. Ohata, “A novel 2DEGFET model based on the parabolic velocity-field curve approximation,” IEEE Trans. Electron Dev., ED-33, No. 10, 1580–1586 (1986).

    ADS  Google Scholar 

  46. A. A. Grinberg, “Analytical model of the modulation doped field-effect transistors including electron diffusion and drift velocity saturation,” J. Appl. Phys., 62, No. 4, 1537–1538 (1987).

    ADS  Google Scholar 

  47. F. N. Trofimenkoff, “Field-dependent mobility analysis of the field-effect transistor,” Proc. IEEE, 53, No. 11, 1973–1974 (1965).

    Google Scholar 

  48. Y. M. Kim and P. Roblin, “Two-dimensional charge-control model for MODFETs,” IEEE Trans. Electron Dev., ED-33, No. 11, 1644–1651 (1986).

    ADS  Google Scholar 

  49. A. A. Grinberg, “The effect of the two-dimensional gas degeneracy on the I-V characteristics of the modulation-doped field-effect transistor,” J. Appl. Phys., 60, No. 3, 1097–1103 (1986).

    ADS  Google Scholar 

  50. D. Loret, “Two-dimensional numerical model for the high electron mobility transistor,” Solid State Electron., 30, No. 11, 1197–1203 (1987).

    ADS  Google Scholar 

  51. W. Fischer, “Equivalent circuit and gain of MOS field effect transistors,” Solid State Electron., 9, No. 1, 71–81 (1962).

    ADS  Google Scholar 

  52. D. J. Arnold, R. Fischer, W. F. Koop, et al., “Microwave characterization of (Al, Ga)As/GaAs modulation-doped FETs: bias dependence of small-signal parameters,” IEEE Trans. Electron Dev., ED-31, No. 10, 1399–1402 (1984).

    ADS  Google Scholar 

  53. T. J. Drummond, S. L. Su, W. Koop, et al., “High-velocity N-ON and N-OFF modulation doped GaAs/AlxGal-xAs FETs,” IEDM Tech. Dig., 586-589 (1982).

    Google Scholar 

  54. P. Pearsall, “Two-dimensional electronic systems for high-speed device applications,” Surf. Sci., 142, No. 1-3, 529–544 (1984).

    ADS  Google Scholar 

  55. A. L. Powell, P. Mistry, J. S. Roberts, et al., “Al0.45Ga0.55As/GaAs HEMTs grown by MOVPE exhibiting high transconductance,” Electron. Lett., 23, No. 10, 528–529 (1987).

    ADS  Google Scholar 

  56. I. C. Kizilyalli, K. Hess, J. L. Larson, et al., “Scaling properties of high electron mobility transistors,” IEEE Trans. Electron Dev., ED-33, No. 10, 1427–1432 (1986).

    ADS  Google Scholar 

  57. H. Damkes, W. Brockerhoff, K. Heine, K. Ploog, et al., “Optimization of modulation doped heterostructures for TEGFET operation at room temperature,” Electron. Lett., 19, No. 15, 615–618 (1984).

    ADS  Google Scholar 

  58. A. Cappy, A. Vanoverschelde, M. Schortgen, et al., “Noise modeling in submicrometer-gate two-dimensional electron-gas field-effect transistors,” IEEE Trans. Electron Dev., ED-32, No. 12, 2786–2796 (1985).

    ADS  Google Scholar 

  59. T. M. Brookes, “The noise properties of high electron mobility transistors,” IEEE Trans. Electron Dev., ED-33, No. 1, 52–57 (1986).

    MathSciNet  ADS  Google Scholar 

  60. H. Fukui, “Optimum noise figure of microwave GaAs MESFETs,” IEEE Trans. Electron Dev., ED-26, No. 7, 1032–1037 (1979).

    ADS  Google Scholar 

  61. K. Nakahama, M. Nakanishi, Y. Sasahi, et al., “Super low noise HEMT using focused ion beam lithography,” Electron. Lett., 24, No. 4, 242–243 (1988).

    Google Scholar 

  62. K. H. G. Duh, M. W. Pospieszalski, W. F. Koop, et al., “Ultra-low-noise cryogenic high-electron-mobility transistors,” IEEE Trans. Electron. Dev., ED-35, No. 3, 249–256 (1988).

    ADS  Google Scholar 

  63. A. J. Valois and G. Y. Robinson, “Characterization of deep levels in modulation-doped AlGaAs/GaAs FETs,” IEEE Electron. Dev. Lett., EDL-4, No. 10, 360–362 (1983).

    ADS  Google Scholar 

  64. M. Rocchi, “Status of the surface and bulk parasitic effects limiting the performance of GaAs ICs,” Physica, 129B, 119–138 (1985).

    Google Scholar 

  65. R. T. Kaneshiro, C. P. Kocot, R. P. Jaeger, et al., “Anomalous nanosecond transient components in a GaAs MODFET technology,” IEEE Electron. Dev. Lett., EDL-9, No. 5, 250–252 (1988).

    ADS  Google Scholar 

  66. J. R. Kirtley, T. N. Theis, P. M. Mooney, et al., “Noise spectroscopy of deep level (DX) centers in GaAs-AlxGal-xAs heterostructures,” J. Appl. Phys., 63, No. 5, 1541–1548 (1988).

    ADS  Google Scholar 

  67. E. Calleja, A. Gomez, and E. Munoz, “Direct evidence of the DX center link to the L-conduction band minimum in GaAlAs,” Appl. Phys. Lett., 52, No. 5, 383–385 (1988).

    ADS  Google Scholar 

  68. P. M. Mooney, N. S. Caswell, and S. L. Wright, “The capture barrier of the DX center in Si-doped AlxGal-xAs,” J. Appl. Phys., 62, No. 12, 4786–4797 (1987).

    ADS  Google Scholar 

  69. M. Mizuta and K. Mori, “Characterization of the DX center in the indirect AlxGal-xAs alloy,” Phys. Rev. B, 37, No. 2, 1043–1046 (1988).

    ADS  Google Scholar 

  70. A. J. Matulionis, J. K. Požela, E. A. Shimulite, et al., “Electron mobility in the graded bandgap epitaxial n-AlxGal-xAs having a intervalley Γ—Xjunction,” FTP, 9, No. 3, 572–575 (1975).

    Google Scholar 

  71. K. Lee, M. S. Shur, T. J. Drummond, et al., “Current—voltage and capacitance—voltage characteristics of modulation doped-field-effecttransistors,” IEEE Trans. Electron Dev., ED-30, No. 3, 207–212 (1983).

    Google Scholar 

  72. C. P. Lee, D. L. Miller, D. Hou, et al., “Ultra high speed integrated circuits using GaAs/AlGaAs high electron mobility transistors,” IEEE Trans. Electron Dev., ED-30, No. 11, 1569 (1983).

    Google Scholar 

  73. M. Abe, T. Mimura, N. Yokoyama, et al., “New technology towards GaAs LSI/VLSI for computer applications,” IEEE Trans. Electron Dev., ED-29, No. 7, 1088–1093 (1982).

    ADS  Google Scholar 

  74. N. T. Linh, P. N. Tung, N. Delagebeaudeuf, et al., “High speed—low power GaAS/AlGaAs TEGFET integrated circuits,” IEDM Tech. Dig., 582-585 (1982).

    Google Scholar 

  75. S. P. Svensson, B. J. L. Nilsson, J. R. Willhite, et al., “Threshold voltage dependence on design parameters and layer uniformity in high electron mobility transistors,” J. Appl. Phys., 60, No. 6, 2154–2161 (1986).

    ADS  Google Scholar 

  76. K. Nishiuchi, T. Mimura, S. Kuroda, et al., “Device characteristics of short channel high electron mobility transistors (HEMT),” IEEE Trans. Electron Dev., ED-30, No. 11, 1569–1570 (1983).

    Google Scholar 

  77. S. G. Bandy, C. K. Nishimoto, C. Yuen, et al., “A 2-20 GHz high-gain monolithic HEMT distributed amplifier,” IEEE Trans. Electron Dev., ED-34, No. 12, 2603–2609 (1987).

    Google Scholar 

  78. A. N. Lepore, H. M. Levy, R. C. Tiberio, et al., “0.1 μm gate length MODFETs with unity current gain cutoff frequency above 110 GHz,” Electron. Lett., 24, No. 6, 364–366 (1988).

    Google Scholar 

  79. R. A. Kiehl, H. I. Stornier, K. Baldwin, et al., “Modulation-doped field-effect transistors and logic gates based on two-dimensional hole gas,” IEEE Trans. Electron Dev., ED-31, No. 12, 1968 (1984).

    Google Scholar 

  80. M. Hirano, K. Oe, F. Yanagawa, and K. Tsubaki, “Device characterization of p-channel AlGaAs/GaAs MIS-like heterostructure FETs,” IEEE Trans. Electron Dev., ED-34, No. 12, 2399–2404 (1987).

    Google Scholar 

  81. R. A. Kiehl, M. A. Scontras, D. J. Widiger, et al., “The potential of complementary heterostructure FETICs,” IEEE Trans. Electron Dev., ED-34, No. 12, 2412–2421 (1987).

    Google Scholar 

  82. H. Hida, Y. Akiba, Y. Suzuki, et al., “High-efficiency power 2DEGFETs based on a surface undoped layer n-AlGaAs/GaAs selectively doped structure for Ka-band,” Electron. Lett., 22, No. 16, 862–864 (1986).

    ADS  Google Scholar 

  83. S. P. Svensson, “Theoretical analysis of the layer design of inverted single-channel heterostructure transistors,” IEEE Trans. Electron Dev., ED-34, No. 5, 992–1000 (1987).

    Google Scholar 

  84. K. Lee, M. Shur, T. J. Drummond, et al., “Charge control model of inverted GaAs—AlGaAs modulation doped FETs (MODFETs),” J. Vac. Sci. Technol., 82, No. 1, 113–116 (1986).

    Google Scholar 

  85. R. E. Thorne, R. Fischer, S. L. Su, et al., “Performance of inverted structure modulation doped Schottky barrier field effect transistors,” Jpn. J. Appl. Phys. Lett., 21, No. 4, L223–224 (1982).

    ADS  Google Scholar 

  86. K. Inoue, H. Sakaki, and J. Yoshino, “Field-dependent transport of electrons in selectively doped AlGaAs/GaAs/AlGaAs double-heterojunctionsy stems,” Appl. Phys. Lett., 47, No. 6, 614–616 (1985).

    ADS  Google Scholar 

  87. H. Daembkes and G. Weimann, “Multiple quantum well AlGaAs/GaAs field-effect transistor structures for power applications,” Appl. Phys. Lett., 52, No. 17, 1404–1406 (1988).

    ADS  Google Scholar 

  88. T. E. Zipperian, L. R. Dawson, T. J. Drummond, et al., “GaAs/(In, Ga)As, p-channel, multiple strained quantum well field-effect transistors with high transconductance and high peak saturated drain current,” Appl. Phys. Lett., 52, No. 12, 975–977 (1988).

    ADS  Google Scholar 

  89. K. Inoue, H. Sakaki, J. Yoshino, et al., “Self-consistent calculation of electronic states in AlGaAs/GaAs/AlGaAs selectively doped double-heterojunction systems under electric fields,” J. Appl. Phys., 58, No. 11, 4277–4281 (1985).

    ADS  Google Scholar 

  90. K. Inoue and H. Sakaki, “A new highly-conductive (Al Ga)As/GaAs/(Al Ga)As selectively doped double-heterojunction field-effect transistor (SD-DH-FET),” Jpn. J. Appl. Phys., 23, No. 2, L61–L63 (1984).

    ADS  Google Scholar 

  91. H. Sakaki, “Velocity-modulation transistor (VMT) — a new field-effect transistor concept,” Jpn. J. Appl. Phys. Lett., 21, No. 6, L381–L383 (1982).

    ADS  Google Scholar 

  92. I. C. Kizilyalli and K. Hess, “Ensemble Monte Carlo simulation of a velocity-modulation field effect transistor (VMT),” Jpn. J. Appl. Phys., 26, No. 9, 1519–1524 (1987).

    ADS  Google Scholar 

  93. A. Matulionis, J. Požela, and V. Jucienė, “Magnetoresistance of graded bandgap n-AlxGal-xAs crystals,” Lit. Fiz. Sb., XVI, No. 5, 703–705 (1976).

    Google Scholar 

  94. A. Matulionis, J. Požela, and E. Starikov, “EMF of hot electrons in a graded bandgap crystal,” Lit. Fiz. Sb., XIX, No. 5, 683–691 (1979).

    Google Scholar 

  95. V. Jucienė, A. Matulionis, J. Požela, et al., “Shift of a T—X junction due to hydrostatic pressure,” Sol. St. Commun., 13, No. 4, 453–455 (1973).

    ADS  Google Scholar 

  96. A. Matulionis, J. Požela, E. Shimulite, et al., “Pressure transducers based on graded bandgap crystals,” in: Electrons in Semiconductors, Vol. 2, Semiconductor Transducers, J. Požela (ed.) [in Russian] Mokslas, Vilnius (1980) pp. 141-169.

    Google Scholar 

  97. K. Kitahara, M. Hoshino, K. Kodama, et al., “Two-dimensional-electron gas inundoped and selectively-doped GaInP/GaAs heterostructures grown by chloride-vapor-phase epitaxy,” Jpn. J. Appl. Phys., 26, No. 7, L1119–L1121 (1987).

    ADS  Google Scholar 

  98. M. Razeghi, P. Maurel, F. Omnes, et al., “First observation of the two-dimensional properties of the electron gas in Ga0.49In0.51P/GaAs heterojunctions grown by low-pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett., 48, No. 19, 1267–1269 (1986).

    ADS  Google Scholar 

  99. P. J. A. Thijs, J. M. Lagemaat, and R. Woltjer, “High mobility two-dimensional electron gas in InP/Ga0.47In0.53As heterojunctions grown by low-pressure organometallic vapour phase epitaxy,” Electron. Lett., 24, No. 4, 226–227 (1988).

    Google Scholar 

  100. W. K. Chan, H. M. Cox, J. H. Abeles, et al., “Langmuir-Blodgett deposited cadmium gate inverted InP—GaInAs modulation-doped field-effect transistors,” Electron. Lett., 23, No. 25, 1346–1348 (1987).

    ADS  Google Scholar 

  101. L. Aina, M. Mattingly, and B. Potter, “High mobility, selectively doped InP/GaInAs grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett., 51, No. 21, 1735–1737 (1987).

    ADS  Google Scholar 

  102. A. Shahar, M. D. Feuer, U. Koren, et al., “DC and microwave characteristics of modulation doped Ga0.47In0.53As/InP HFET,” Electron. Lett., 24, No. 11, 702–703 (1988).

    ADS  Google Scholar 

  103. T. Itoh, T. Griem, G. W. Wicks, et al., “Sheet electron concentration at the heterointerface in Al0.47In0.53As/Ga0.47In0.53As modulation-doped structures,” Electron. Lett., 21, No. 9, 373–374 (1985).

    ADS  Google Scholar 

  104. P. Chu, C. L. Lin, and H. H. Wieder, “Schottky-barrier height of Ga0.47In0.53As,” Electron. Lett., 22, No. 17, 890–891 (1986).

    Google Scholar 

  105. H. Hirose, K. Ohata, T. Mizutani, et al., “700 mS/mm 2DEGFETs fabricated from high mobility, MBE-grown n-AHnAs/GaInAs heterostructures,” in: GaAs and Related Compounds, Inst. Phys. Conf. Ser. Karuizawa, 529-534 (1985).

    Google Scholar 

  106. M. Kamada, H. Ishikawa, M. Ikeda, et al., “MOCVD growth of selectively doped AlInAs/GaInAs heterostructures and its application to HIFETs (heterointerface FETs),” Electron. Lett., 22, No. 21, 1147–1148 (1986).

    Google Scholar 

  107. L. F. Palmateer, P. J. Tasker, T. Itoh, et al., “Microwave characterization of 1 μm-gate Al0.47In0.53As/Ga0.47In0.53As/InP MODFETs,” Electron. Lett., 23, No. 1, 53–55 (1987).

    ADS  Google Scholar 

  108. W.-P. Hong and P. K. Bhattacharya, “High-field transport in InGaAs/InAlAs modulation doped heterostructures,” IEEE Trans. Electron Dev., ED-34, No. 7, 1491–1495 (1987).

    ADS  Google Scholar 

  109. K. S. Yoon, G. B. Stringfellow, and R. J. Huber, “Transient transport in bulk Ga0.47In0.53As and the two-dimensional electron gas in Ga0.47In0.53As/Al0.47In0.53As,” J. Appl. Phys., 63, No. 4, 1126–1129 (1988).

    ADS  Google Scholar 

  110. C. K. Peng, M. I. Aksun, A. A. Ketterson, et al., “Microwave performance of InAlAs/InGaAs/InPMODFETs,” IEEE Electron Dev. Lett., EDL-8, No. 1, 24–26 (1987).

    ADS  Google Scholar 

  111. U. K. Mishra, A. S. Brown, L. M. Jelloian, et al., “High-performance submicrometer AlInAs—GaInAs HEMTs,” IEEE Electron Dev. Lett., EDL-9, No. 1, 41–43 (1988).

    ADS  Google Scholar 

  112. Y. K. Chen, G. W. Wang, D. C. Radulescu, et al., “Comparisons of microwave performance between single-gate and dual-gate MODFETs,” IEEE Electron Dev. Lett., EDL-9, No. 2, 59–61 (1988).

    ADS  Google Scholar 

  113. W.-P. Hong and P. K. Bhattacharya, “Backgating studies in In0.53Ga0.47As/ In0.52Al0.48As modulation-doped field-effect transistors,” IEEE Trans. Electron Dev., ED-35, No. 1, 8–13 (1988).

    ADS  Google Scholar 

  114. K. S. Seo and P. K. Bhattacharya, “Studies on an In0.53Ga0.47As/In0.52Al0.48As single-quantum-well quasi-MESFET,” IEEE Trans. Electron Dev., ED-34, No. 11, 2221–2231 (1987).

    Google Scholar 

  115. K. S. Seo, P. K. Bhattacharya, and K. R. Gleason, “DC and microwave characteristics of an In0.53Ga0.47As/In0.52As0.48As modulation-doped quasi-MESFET,” Electron. Lett., 23, No. 6, 259–260 (1987).

    ADS  Google Scholar 

  116. M. Kamada, T. Kobayashi, H. Ishikawa, et al., “High-transconductance AlInAs/GaInAs HIFETs grown by MOCVD,” Electron. Lett., 23, No. 6, 297–298 (1987).

    ADS  Google Scholar 

  117. J. Singh, “A proposal for high-speed In0.52Al0.48As/In0.53Ga0.47As MODFET with (InAs)m (GaAs)m superlattice channel,” IEEE Electron Dev. Lett., EDL-7, No. 7, 436–439 (1986).

    Google Scholar 

  118. L. K. Orlov and O. A. Kuznetsov, “Electrooptic and photoelectric properties of Ge—Gel-xSix superlattices with the stressed layers,” in: Abstracts of 19th Intern. Conf. Phys. Semicond., Warsaw, Poland, 15-19 August, 1988, We-P-68.

    Google Scholar 

  119. H. Daembkes, H. J. Herzog, H. Jorke, et al., “The n-channel SiGe/Si modulation-doped field-effect transistor,” IEEE Trans. Electron Dev., ED-33, No. 5, 633–638 (1986).

    ADS  Google Scholar 

  120. P. G. Kornreich, L. Walsh, J. Flattery, et al., “Proposed size-effect high-electron-mobility transistor,” Solid State Electron., 29, No. 4, 421–428 (1986).

    ADS  Google Scholar 

  121. G. C. Osbourn, “Recent trends in III–V strained layer research,” J. Vac. Sci. Technol, 4, No. 6, 1423–1426 (1986).

    ADS  Google Scholar 

  122. Y. K. Chen, G. W. Wang, D. C. Radulescu, et al., “Bias-dependent microwave characteristics of atomic planar-doped AlGaAs/InGaAs/GaAs double heterojunction MODFETs,” IEEE Trans. Microwave Theory and Techniques, MTT-35, No. 12, 1456–1460 (1987).

    ADS  Google Scholar 

  123. A. A. Ketterson, W. T. Masselink, J. S. Gedymin, et al., “Characterization of InGaAs/AlGaAs pseudomorphic modulation-doped field-effect transistors,” IEEE Trans. Electron Dev., ED-33, No. 5, 564–571 (1986).

    ADS  Google Scholar 

  124. T. Henderson, M. I. Aksun, C. K. Peng, et al., “Microwave performance of a quarter-micrometer gate low-noise pseudomorphic InGaAs/AlGaAs modulation-doped field effect transistor,” IEEE Electron. Dev. Lett., EDL-7, No. 12, 649–651 (1986).

    ADS  Google Scholar 

  125. S. M. J. Liu, M. B. Das, C. K. Peng, et al., “Low-noise behavior of InGaAs quantum-well-structured modulation doped FETs from 10-2 to 108 Hz,” IEEE Trans. Electron Dev., ED-33, No. 5, 576–582 (1986).

    ADS  Google Scholar 

  126. T. Henderson, J. Klem, C. K. Peng, et al., “DC and microwave characteristics of a high current double interface GaAs/InGaAs/AlGaAs pseudomorphic modulation-doped field-effect transistor,” Appl. Phys. Lett., 48, No. 16, 1080–1082 (1986).

    ADS  Google Scholar 

  127. W. T. Masselink, A. Ketterson, J. Klem, et al., “Cryogenic operation of pseudomorphic AlGaAs/InGaAs single-quantum-well MODFETs,” Electron. Lett., 21, No. 20, 937–939 (1985).

    ADS  Google Scholar 

  128. H. Morkoç, T. Henderson, W. Kopp, et al., “High-frequency noise of InyGal-y As/AlxGal-x MODFETs and comparison to GaAs/AlxGal-x As MODFETs,” Electron. Lett., 22, No. 11, 578–579 (1986).

    ADS  Google Scholar 

  129. A. A. Ketterson and H. Morkoç, “GaAs/AlGaAs and InGaAs/AlGaAs MODFET inverter simulations,” IEEE Trans. Electron Dev., ED-33, No. 11, 1626–1634 (1986).

    ADS  Google Scholar 

  130. L. D. Nguyen, W. J. Schaff, P. J. Tasker, et al., “Charge control, DC, and RF performance of a 0.35-μm pseudomorphic AlGaAs/InGaAs modulation-doped field-effect transistor,” IEEE Trans. Electron Dev., ED-35, No. 2, 139–144 (1988).

    ADS  Google Scholar 

  131. A. Fathimulla, H. Hier, and J. Abrahams, “High-current planar-doped pseudomorphic Ga0.4In0.6As/Al0.48In0.52As HEMTs,” Electron. Lett., 24, No. 11, 717–718 (1988).

    ADS  Google Scholar 

  132. R. People, “Band alignments for pseudomorphic InP/InxGal-x As heterostructures for growth on (001)InP,” J. Appl. Phys., 62, No. 6, 2551–2553 (1987).

    ADS  Google Scholar 

  133. M. Jaffe, Y. Sekiguchi, and J. Singh, “Theoretical formalism to understand the role of strain in the tailoring of hole masses in p-type InxGal-x As (on GaAs substrates) and In0.53+x Ga0.47-x As (for InP substrates) modulation-doped field-effect transistors,” Appl Phys. Lett., 51, No. 23, 1943–1945 (1987).

    ADS  Google Scholar 

  134. T. J. Drummond, T. E. Zipperian, I. J. Fritz, et al., “p-channel, strained quantum well, field-effect transistor,” Appl. Phys. Lett., 49, No. 8, 461–463 (1986).

    ADS  Google Scholar 

  135. M. Sakaue, K. Murase, and Y. Amemiya, “Self-aligned half-micrometer silicon MASFETs with metallic amorphous silicon gate,” IEEE Trans. Electron Dev., ED-33, No. 7, 997–1004 (1986).

    ADS  Google Scholar 

  136. M. Suzuki, K. Murase, N. Kato, et al., “Advantages of metallic-amorphous-silicon-gate FETs in GaAs LSI applications,” IEEE Trans. Electron Dev., ED-33, No. 7, 919–924 (1986).

    ADS  Google Scholar 

  137. T. J. Drummond, H. Morkoç, K. Lee, et al., “Model for modulation doped field effect transistor,” IEEE Electron. Dev. Lett., EDL-3, No. 11, 338–341 (1982).

    Google Scholar 

  138. T. Ikegami, K. Yamasaki, T. Mizutani, et al., “Technical issues of high-speed heterostructure devices,” in: High-Speed Electronics, B. Kälbäck and H. Beneking (eds.), Proc. Int. Conf. Stockholm, Sweden, August 7-9, 1986. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo (1986) pp. 79-87.

    Google Scholar 

  139. J. Baek, M. Shur, R.R. Daniels, et al., “Current—voltage and capacitance—voltage characteristics of heterostructure insulated-gate field-effect transistors,” IEEE Trans. Electron Dev., ED-34, No. 8, 1650–1657 (1987).

    ADS  Google Scholar 

  140. T. Mizutani, S. Fujita, and F. Yanagawa, “Complementary circuit with AlGaAs/GaAs heterostructure MESFETs employing high-mobility-two-dimensional electron and hole gases,” Electron. Lett., 21, No. 23, 1116–1117 (1985).

    ADS  Google Scholar 

  141. M. Kamada, H. Ishikawa, K. Kaneko, et al., “W/WSi gate self-aligned HIFETs (heterointerface FETs) using an AlInAs/GaInAs heterostructure grown by MOCVD,” Electron. Lett., 24, No. 5, 271–272 (1988).

    Google Scholar 

  142. H. Hida, A. Okamoto, H. Toyoshima, et al., “A high current drivability i-AlGaAs/n-GaAs doped-channel MIS-like FET (DMT),” IEEE Electron. Dev. Lett., EDL-7, No. 11, 625–626 (1986).

    Google Scholar 

  143. H. Hida, A. Okamoto, H. Toyoshima, et al., “An investigation of i-AlGaAs/n-GaAs doped-channel MIS-like FETs (DMTs) — properties and performance potentialities,” IEEE Trans. Electron Dev., ED-34, No. 7, 1448–1455 (1987).

    ADS  Google Scholar 

  144. A. Fathimulla, H. Hier, and J. Abrahams, “Microwave performance of pulse-doped heterostructure GaInAs MESFETs,” Electron. Lett., 24, No. 2, 93–94 (1988).

    ADS  Google Scholar 

  145. H. Baratte, T. N. Jackson, P. M. Solomon, et al., “Ion implantation and annealing of undoped (Al, Ga)As/GaAs heterostructures,” Appl. Phys. Lett., 51, No. 18, 1459–1461 (1987).

    ADS  Google Scholar 

  146. M. Chen, W. J. Schaff, P. J. Tasker, et al., “Self-aligned GaAs gate heterojunction SIS-FET,” Electron. Lett., 23, No. 3, 105–106 (1987).

    ADS  Google Scholar 

  147. M. Chen, W. J. Schaff, P. J. Tasker, et al., “Transconductance dependence on gate length for GaAs gate SISFETs,” Electron. Lett., 23, No. 15, 800–801 (1987).

    ADS  Google Scholar 

  148. M. D. Feuer, J. M. Kuo, S. C. Shunk, et al., “Microwave performance of InGaAs/InAlAs/InPSISFETs,” IEEE Electron Dev. Lett., EDL-9, No. 4, 162–164 (1988).

    ADS  Google Scholar 

  149. J. Y. Raulin, E. Thorngren, M. A. diForte-Poisson, et al., “Very high transconductance InGaAs/InP junction field-effect transistor with submicrometer gate,” Appl. Phys. Lett., 50, No. 9, 535–536 (1987).

    ADS  Google Scholar 

  150. K. L. Priddy, D. R. Kitchen, J. A. Grzyb, et al., “Design of enhanced Schottky-barrier AlGaAs/GaAs MODFETs using highly doped p + surface layers,” IEEE Trans. Electron Dev. ED-34, No. 2, 175–179 (1987).

    ADS  Google Scholar 

  151. G. W. Taylor and J. G. Simmons, “Heteroj unction field-effect transistor(HFET),” Electron. Lett., 22, No. 15, 784–786 (1986).

    ADS  Google Scholar 

  152. J. G. Simmons and G. W. Taylor, “New heterostructure junction field-effect transistor (HJFET),” Electron. Lett., 22, No. 22, 1167–1169 (1986).

    Google Scholar 

  153. G. W. Taylor, M. S. Lebby, T. Y. Chang, et al., “Very high transconductance heterojunction field-effect transistor (HFET),” Electron. Lett., 23, No. 2, 77–79 (1987).

    Google Scholar 

  154. G. W. Taylor and J. G. Simmons, “High-speed integrated heterojunction field-effect transistor photodetector: A gated photodetector,” Appl. Phys. Lett., 50, No. 24, 1754–1748 (1987).

    ADS  Google Scholar 

  155. G. W. Taylor and J. G. Simmons, “The bipolar inversion channel field-effect transistor (BICFET) — anew field-effect solid-state device: theory and structures,” IEEE Trans. Electron Dev., ED-32, No. 11, 2345–2367 (1985).

    ADS  Google Scholar 

  156. G. W. Wang, Y. K. Chen, D. C. Radulescu, et al., “A high-current pseudomorphic AlGaAs/InGaAs double quantum-well MODFET,” IEEE Electron. Dev. Lett., EDL-9, No. 1, 4–6 (1988).

    ADS  Google Scholar 

  157. A. Dargis, S. Zilenis, A. Matulionis, et al., “Current-voltage charactics of graded bandgap crystals,” Lit. Fiz. Sb., 17, No. 4, 493–500 (1977) [English translation: Sov. Phys. Collect., 17, 63-67 (1977)].

    Google Scholar 

  158. A. A. Kal’fa and A. S. Tager, “Selectively doped heterostructures and their application,” in: Multilayer Semiconductor Structures and Superlattices [in Russian], Institute of Applied Physics of the Academy of Sciences of the USSR, Gorkii (1984), pp. 104-131.

    Google Scholar 

  159. H. Morkoc, “Modulation-doped FETs providing gain at 250 GHz and oscillating at frequencies well above, extend the horizons of high performance circuits, from signal processing to space;” Circuits and Devices, 15-20, November 1991.

    Google Scholar 

  160. M. C. Foisy, P. J. Tasker, B. Hughes, and L. F. Eastman, “The role of inefficient charge modulation in limiting the current-gain cutoff frequency of the MODFET,” IEEE Trans. Electron. Dev., ED-35, No. 7, 871–878 (1988).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Požela, J. (1993). Heterostructure Field-Effect Transistors. In: Physics of High-Speed Transistors. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1242-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1242-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1244-2

  • Online ISBN: 978-1-4899-1242-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics