Skip to main content

Linewidth Reduction by the Formation of a Fiber External Cavity with the Vertical Emission of a Distributed Bragg Reflector Laser

  • Chapter
Guided-Wave Optoelectronics

Abstract

Narrow-linewidth sources are essential for optical systems such as coherent optical communications and optical sensors. One way of obtaining narrow linewidths is to insert the semiconductor laser into a passive external cavity containing a mirror [1, 2], a diffraction grating [1, 3–5], a GRIN rod [6], an optical fiber [7–10], or an optical fiber containing a fiber Bragg grating [11]. Linewidths of hundreds of kHz [2, 3, 6], tens of kHz [1, 3, 4, 7, 8], or even less [5, 11] have been reported for these external-cavity lasers. Almost all the reports have involved either a Fabry-Perot semiconductor laser or a DFB semiconductor laser as the active element. Furthermore, the front or rear facet emission has been used in these reports to couple the reflected light back into the laser cavity. In this paper, the use of vertical emission from a DBR laser to obtain a narrow linewidth is reported. To the authors’ knowledge, this is the first report of using vertical emission to decrease the laser linewidth in an external cavity configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Saito and Y. Yamamoto, “Direct observation of lorentzian lineshape of semiconductor laser and linewidth reduction with external grating feedback,” Electron. Lett., vol. 17, pp. 325–327, 1981.

    Article  Google Scholar 

  2. L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, and R. O. Miles, “Spectral characteristics of semiconductor lasers with optical feedback,” IEEE J. Quantum Electron., vol. QE-18, pp. 555–564, 1982.

    Google Scholar 

  3. H. Olesen, S. Saito, T. Mukai, T. Saitoh, and O. Mikami, “Solitary Spectral Linewdith and its reduction with external grating feedback for a 1.55 µm InGaAsP BH laser,” Jap. J. Appl. Phys., vol. 22, pp. L664 - L666, 1983.

    Article  ADS  Google Scholar 

  4. S. Saito, O. Nilsson, and Y. Yamamoto, “Oscillation center frequency tuning, quantum FM noise, and direct frequency modulation characteristics in external grating loaded semiconductor lasers,” IEEE J. Quantum Electron., vol. QE-18, pp. 961–970, 1982.

    Google Scholar 

  5. R. Wyatt and W. J. Devlin, “10 kHz linewidth 1.5 pm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett., vol. 19, pp. 110–112, 1983.

    Article  Google Scholar 

  6. H. Rongqing, T. Shangping, W. Yizun, and P. Huaide, “An experimental study on stable single-frequency semiconductor lasers with external cavity,” IEEE Photon. Technol. Lett., vol. 1, pp. 255–257, 1989.

    Article  Google Scholar 

  7. F. Farve, D. Le Guen, and J. C. Simon, “Optical feedback effects upon laser diode oscillation field spectrum,” IEEE J. Quantum Electron., vol. QE-18, pp. 1712–1717, 1982.

    Google Scholar 

  8. K. -Y. Liou, Y. K. Thee, C. A. Burrus, K. L. Hall, and P. J. Anthony, “Narrow-linewidth fibre-external-cavity injection lasers,” vol. 21, pp. 933–934, 1985.

    Google Scholar 

  9. K. -Y. Liou, Y. K. Jhee, G. Eisenstein, R. S. Tucker, R. T. Ku, T. M. Shen, U. K. Chakrabarti, and P. J. Anthony, “Linewidth characteristics of fiber-extended-cavity distributed-feedback lasers,” Appl. Phys. Lett., vol. 48, pp. 1039–1041, 1986.

    Article  ADS  Google Scholar 

  10. N. Schunk and K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron., vol. QE-24, pp. 1242–1247, 1988.

    Google Scholar 

  11. C. A. Park, C. J. Rowe, J. Buus, D. C. J. Reid, A. Carter, and I. Bennion, “Single-mode behaviour of a multimode 1.55 pm laser with a fibre grating external cavity,” Electron. Lett., vol. 22, pp. 1132–1133, 1986.

    Article  Google Scholar 

  12. D. F. Welch, D. G. Mehuys, and R. A. Parke, “High-power CW, diffraction-limited emission from a monolithically-integrated active grating master oscillator power amplifier,” NASA contractor report 4464, Contract NAS1–19287, Aug. 1992.

    Google Scholar 

  13. Hewlett Packard Application Note 371, P/N 5954–9137, Example 13, p. 40.

    Google Scholar 

  14. Y. C. Chen, “Noise characteristics of semiconductor laser diodes coupled to short optical fibers,” Appl. Phys. Lett., vol. 37, pp. 587–589, 1980.

    Article  ADS  Google Scholar 

  15. H. Sato, T. Fujita, and K. Fujito, “Intensity fluctuation in semiconductor laser coupled to external cavity,” IEEE J. Quantum. Electron., vol. QE-21, pp. 46–51, 1985.

    Google Scholar 

  16. T. Fujita, S. Ishizuka, K. Fujito, H. Serizawa, and H. Sato, “Intensity noise suppression and modulation characteristics of a laser diode coupled to an external cavity,” IEEE J. Quantum. Electron., vol. QE-20, pp. 492–499, 1984.

    Google Scholar 

  17. K. Kikuchi and T. Okoshi, “Simple formula giving spectrum-narrowing ratio of semiconductor-laser output obtained by optical feedback,” Electron. Lett., vol. 18, pp. 10–11, 1982.

    Article  ADS  Google Scholar 

  18. R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-pm distributed feedback lasers,” IEEE J. Lightwave Tech., vol. LT-4, pp. 1655–1661, 1986.

    Article  ADS  Google Scholar 

  19. D. Renner and J. E. Carroll, “Simple system for broad-band single-mode tuning of D. H. GaAlAs lasers,” Electron. Lett., vol. 15, pp. 73–74, 1979.

    Article  ADS  Google Scholar 

  20. K. R. Preston, K. C. Wollard, and k. H. Cameron, “External cavity controlled single longitudinal mode laser transmitter module,” Electron. Lett., vol. 17, pp. 931–933, 1981.

    Article  ADS  Google Scholar 

  21. H. Sato, T. Fujita, J. Ohya, “Theoretical analysis of longitudinal mode coupling in external cavity semiconductor laser,” IEEE J. Quantum. Electron., vol. QE-21, pp. 284–291, 1985.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cook, A.L., Hendricks, H.D. (1995). Linewidth Reduction by the Formation of a Fiber External Cavity with the Vertical Emission of a Distributed Bragg Reflector Laser. In: Tamir, T., Griffel, G., Bertoni, H.L. (eds) Guided-Wave Optoelectronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1039-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1039-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1041-7

  • Online ISBN: 978-1-4899-1039-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics