Skip to main content

Abstract

Oxidation kinetics of p-type (100) silicon in 1 atm dry carbon dioxide-carbon monoxide-argon gas mixture were examined using thermogravimetry. The kinetics follow the parallel diffusion model originally proposed by Han et al. for oxidation in dry oxygen. The oxidation rates are governed by only the partial pressure of carbon dioxide, and they are independent of the partial pressures of carbon monoxide and oxygen. The possible reaction mechanism is proposed, where the dominant diffusion species and less dominant species are the interstitial oxygen molecule and oxygen vacancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. E. Katz, Oxidation, in: “VLSI Technology,” S. M. Sze, ed., McGraw-Hill International Book, New York (1983).

    Google Scholar 

  2. E. A. Irene, J. Electrochem. Soc., 125, 1708 (1978).

    Article  CAS  Google Scholar 

  3. C. Hashimoto, S. Muramoto, N. Shiono, and O. Nakajima, ibid., 127, 129 (1980).

    CAS  Google Scholar 

  4. A. C.’Adams, T. E. Smith, and C. C. Chang, ibid, 127, 1787 (1980).

    Google Scholar 

  5. E. A: Irene, An Overview of the Kinetics of Oxidation of Silicon, in: “Passivity of Metals and Semiconductors,” M. Froment, ed., Elsevier Sci. Pub., Amsterdam (1983).

    Google Scholar 

  6. K. K. Ng, W. J. Polito, and J. R. Ligenza, Appl. Phys. Lett., 44, 626 (1984).

    Article  CAS  Google Scholar 

  7. C. Han and C. R. Helms, J. Electrochem. Soc., 134, 1297 (1967).

    Article  Google Scholar 

  8. W. Kern and D. A. Puotinen, RCA Rev. 31, 187 (1970).

    CAS  Google Scholar 

  9. G. M. Crosbie, J. Solid State Chem. 25, 367 (1978).

    Article  CAS  Google Scholar 

  10. B. E. Deal and A. S. Grove, J. Appl. Phys., 36, 3770 (1965).

    Article  CAS  Google Scholar 

  11. M. A. Hopper, R. A. Clarke, and L. Young, J. Electrochem. Soc., 122, 1216 (1975).

    Google Scholar 

  12. E. A. Irene, J. Appl. Phys. 54, 5416 (1983).

    Article  CAS  Google Scholar 

  13. H. Z. Massoud, J. D. Plummer, and E. A. Irene, J. Electrochem. Soc., 132, 1745 (1985).

    Article  CAS  Google Scholar 

  14. H. Z. Massoud, J. D. Plummer, and E. A. Irene, ibid., 132, 2685 (1985):

    Google Scholar 

  15. A. G. Revesz, B. J. Mrstik, H. L. Hughes, and D. mcCarthy, ibid.

    Google Scholar 

  16. J. K. Sriastava, M. Prasad, and J. B. Wagner, Jr., ibid., 132, 955 (1985).

    Google Scholar 

  17. J. K. Srivastava, V. B. Tare, and J. B. Wagner, Jr., ibid., 132, 310 (1985).

    CAS  Google Scholar 

  18. E. A. Irene, ibid., 121, 1613 (1974).

    Google Scholar 

  19. P. J. Burkhardt and L. V. Gregor, Trans. Metall. Soc. AIME, 236, 299 (1966).

    CAS  Google Scholar 

  20. A. G. Revesz and R. J. Evans, J. Phys. Chem. Solids 30, 551 (1969).

    Article  CAS  Google Scholar 

  21. R: B. Fair, Impurity Diffusion and Oxidation of Silicon, in: “Silicon Integrated Circuits, Part B,” Dawon Kahng, ed., Academic Press, New York (1981).

    Google Scholar 

  22. R. M. Burger and R. P. Donovan, “Fundamentals of Silicon Integrated Device Technology, vol. 1, Oxidation, Diffusion and Epitaxy,” pp. 48, Prentice-Hall, Englewood Cliffs (1968).

    Google Scholar 

  23. E. H. Nicollian, J. R. Brews, “MOS (Metal Oxide Semiconductor) Physics and Technology,” pp. 665, Wiley International Pub., New York (1982).

    Google Scholar 

  24. W. J. Moore, “Physical Chemistry (4th edition),” pp. 157 ( 1972 ), Prentice-Hall, Englewood Cliffs (1972).

    Google Scholar 

  25. E. Rosencher, A. Straboni, S. Rigo, and G. A.sel, J. Appl. Phys. Lett., 34, 259 (1979).

    Article  Google Scholar 

  26. F. J. Norton, Nature, 171, 701 (1961).

    Article  Google Scholar 

  27. D. R. Stull and H. Prophet, “JANAF Thermodynamical Tables (2nd edition),” NSRDS-NBS 37 (1971).

    Google Scholar 

  28. O. Kubaschewski, B. E. Hopkins, “Oxidation of Metals and Alloys (2nd edition),” pp. 82, Butterworths, London (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sakon, T., Wagner, J.B. (1988). Oxidation Kinetics of Si in Dry CO2 . In: Helms, C.R., Deal, B.E. (eds) The Physics and Chemistry of SiO2 and the Si-SiO2 Interface. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0774-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0774-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0776-9

  • Online ISBN: 978-1-4899-0774-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics