Skip to main content

Abstract

Physical and chemical mutagens induce frank breaks in DNA which reduce its single-strand molecular weight. Other nonbreak lesions in the DNA can often be converted into strand breaks by chemical and enzymatic means. Using agarose gel electrophoresis along with various cleavage schemes, the average density of breaks and various lesion classes along mammalian DNA can be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boiteux, S. (1993). Properties and biological functions of the NTH and FPG proteins of Escherichia coli: Two DNA glycosylases that repair oxidative damage in DNA. J. Photochem. Photobiol. 19:87–96.

    Article  CAS  Google Scholar 

  • Broude, N. E., and Budowsky, E. I. (1971). The reaction of glyoxal with nucleic acid components. III. Kinetics of the reaction with monomers. Biochim. Biophys. Acta 254:380–388.

    Article  PubMed  CAS  Google Scholar 

  • Carmichael, G. G., and McMaster, G. K. (1980). The analysis of nucleic acids in gels using glyoxal and acridine orange. Methods Enzymol. 65:380–391.

    Article  PubMed  CAS  Google Scholar 

  • Doetsch, P. W., and Cunningham, R. P. (1990). The enzymology of apurinic/apyrimidinic endonucleases. Mutat. Res. 236:173–201.

    Article  PubMed  CAS  Google Scholar 

  • Drouin, R., Rodriguez, H., Gao, S., Gebreyes, Z., O’Connor, T. R., Holmquist, G. P., and Akman, S. A. (1996). Cupric ion/ascorbate/hydrogen peroxide-induced DNA damage: DNA-bound copper ion primarily induces base modifications. Free Radical Biol. Med. (in press).

    Google Scholar 

  • Hamer, D. H., and Thomas, C. A., Jr. (1975). The cleavage of Drosophila melanogaster DNA by restriction endonucleases. Chromosoma 49:243–255.

    Article  CAS  Google Scholar 

  • Holmquist, G. P. (1988). DNA sequences in G-bands and R-bands, in:Chromosomes and Chromatin (K. W. Adolph, ed.), CRC Press, Boca Raton, FL, pp. 75–121.

    Google Scholar 

  • Hutton, J. R., and Wetmur, J. G. (1973). Effect of chemical modification on the rate of renaturation of deoxyribonucleic acid. Deaminated and glyoxalated deoxyribonucleic acid. Biochemistry 12:558–563.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, D. (1975). A new method of DNA denaturation mapping. Nucleic Acids Res. 2:2049–2054.

    Article  PubMed  CAS  Google Scholar 

  • Kasten, F. H. (1967). Cytochemical studies with acridine orange and the influence of dye contaminants in the staining of nucleic acids. Int. Rev. Cytol. 21:141–202.

    Article  PubMed  CAS  Google Scholar 

  • McMaster, G. K. and Carmichael, G. G. (1977). Analysis of single-and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc. Natl. Acad. Sci. USA 74:4835–4838.

    Article  PubMed  CAS  Google Scholar 

  • Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Nakaya, K., Takenaka, O., Horinishi, H., and Shibata, K. (1968). Reactions of glyoxal with nucleic acids, nucleotides and their component bases. Biochim. Biophys. Acta 161:23–31.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor, T. R., and Laval, J. (1990). Isolation and structure of a cDNA expressing a mammalian 3-methyl-adenine-DNA glycosylase. EMBO J. 9:3337–3342.

    PubMed  Google Scholar 

  • Ogden, R. C., and Adams, D. A. (1987). Electrophoresis in agarose and acrylamide gels. Methods Enzymol. 152:61–87.

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer, G. P., Drouin, R., Riggs, A. D., and Holmquist, G. P. (1991). In vivo mapping of a DNA adduct at nucleotide resolution: Detection of pyrimidine (6−4) pyrimidone photoproducts by ligation-mediated polymerase chain reaction. Proc. Natl. Acad. Sci. USA 88:1374–1378.

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer, G. P., Drouin, R., Riggs, A. D., and Holmquist, G. P. (1992). Binding of transcription factors creates hot spots for UV photoproducts in vivo. Mol. Cell. Biol. 12:1798–1804.

    PubMed  CAS  Google Scholar 

  • Rigler, R. (1966). Microfluorometric characterization of intracellular nucleic acids and nucleoproteins by acridine orange. Acta Physiol. Scand. 67(Suppl. 267):1–122.

    Google Scholar 

  • Rodriguez, H., Drouin, R., Holmquist, G. P., O’Connor, T. R., Boiteux, S., Laval, J., Doroshow, J. H., and Akman, S. A. (1995). Mapping of copper/hydrogen peroxide-induced DNA damage at nucleotide resolution in human genomic DNA by ligation-mediated PCR. J. Biol. Chem. 270:17633–17640.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E. F, and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Schneider, J. E., Price, S., Maidt, L., Gutteridge, J. M. C., and Floyd, R.A. (1990). Methylene blue plus light mediates 8-hydroxy 2′-deoxyguanosine formation in DNA preferentially over strand breakage. Nucleic Acids Res. 18:631–635.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, R., and Hachmann, J. (1966). The reaction of guanine derivatives with 1,2-dicarbonyl compounds. Biochemistry 5:2799–2807.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, R., Cohen, B. I., Shiuey, S.-J., and Maurer, H. (1969). On the reaction of guanine with glyoxal, pyruvaldehyde, and kethoxal, and the structure of the acylguanines. A new synthesis of N2-alkylguanines. Biochemistry 8:238–245.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, R., Cohen, B. I., and Clagett, D. C. (1970). Specific acylation of the guanine residues of ribonucleic acid. J. Biol. Chem. 245:2633–2639.

    PubMed  CAS  Google Scholar 

  • Tanford, C. (1961). Physical Chemistry of Macromolecules, Wiley, New York.

    Google Scholar 

  • Thomas, P. S. (1980). Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. USA 77:5201–5205.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, S.S. (1988). AP endonucleases and DNA glycosylases that recognize oxidative DNA damage. Environ. Mol. Mutagen. 12:431–477.

    Article  PubMed  CAS  Google Scholar 

  • Willis, C. K., Willis, D. G., and Holmquist, G. P. (1988). An equation for DNA electrophoretic mobility. Appl. Theor. Electrophor. 1:11–18.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Drouin, R., Gao, S., Holmquist, G.P. (1996). Agarose Gel Electrophoresis for DNA Damage Analysis. In: Pfeifer, G.P. (eds) Technologies for Detection of DNA Damage and Mutations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0301-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0301-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0303-7

  • Online ISBN: 978-1-4899-0301-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics