Skip to main content

Cetaceans Are Highly Derived Artiodactyls

  • Chapter
The Emergence of Whales

Part of the book series: Advances in Vertebrate Paleobiology ((AIVP,volume 1))

Abstract

Cetaceans (whales, dolphins, and porpoises) form one of the most dramatically derived group of mammals and modern representatives are easily recognized by the telescoping of the skull, posterior movement of the narial openings, isolation of the earbones, shortening of the neck, loss of external hind limbs, reduction of the pelvic girdle, and addition of vertebrae (e.g., Barnes, 1984). These skeletal character states are among the most conspicuous features within a suite of transformations that cetaceans experienced in basically all of their biological systems during their adaptation to the aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi, J., and Hasegawa, M. 1996. MOLPHY: programs for molecular phylogenetics, version 2.3. Institute of Statistical Mathematics, Tokyo.

    Google Scholar 

  • Archie, J. W. 1989. A randomization test for phylogenetic information in systematic data. Syst. Zool. 38:219–252.

    Google Scholar 

  • Barklow, W. 1995. Hippo talk. Nat. Hist. 104:54.

    Google Scholar 

  • Barnes, L. G. 1984. Whales, dolphins, and porpoises: origin and evolution of the Cetacea, in: T. W. B. Broadhead (ed.), Mammals: Notes for a Short Course organized by P. D. Gingerich and C. E. Badgley, pp. 139-158. University of Tennessee Studies in Geology 8.

    Google Scholar 

  • Boyden, A., and Gemeroy, D. 1950. The relative position of the Cetacea among the orders of Mammalia as indicated by precipitin tests. Zoologica 35:145–151.

    Google Scholar 

  • Bremer, K. 1994. Branch support and tree stability. Cladistics 10:295–304.

    Article  Google Scholar 

  • Czelusniak, J., Goodman, M., Koop, B. R, Tagle, D. A., Shoshani, J., Braunitzer, G., Kleinschmidt, T. K., De Jong, W. W., and Matsuda, G. 1990. Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of Eutheria, in: H. H. Genoways (ed.), Current Mammalogy, Volume 2, pp. 545–572. Plenum Press, New York.

    Google Scholar 

  • DeSalle, R. J., Gatesy, J., Wheeler, W., and Grimaldi, D. 1992. DNA sequences from a fossil termite in OligoMiocene amber and their phylogenetic implications. Science 257:1933–1936.

    Article  PubMed  CAS  Google Scholar 

  • Ebner, K. E., and Schanbacher, F. 1974. In: B. L. Larson and V. R. Smith (eds.), Lactation: A Comprehensive Treatise, Volume 2, Academic Press, New York.

    Google Scholar 

  • Faith, D. P., and Cranston, P. S. 1991. Could a cladogram this short have arisen by chance alone? On permutation test for cladistic structure. Cladistics 7:1–28.

    Article  Google Scholar 

  • Felsenstein, J. 1978. Cases in which parsimony and compatibility methods will be positively misleading. Syst. Zool. 27:401–410.

    Article  Google Scholar 

  • Flower, W. H. 1883. On whales, present and past and their probable origin. Proc. Zool. Soc. London 1883:466–513.

    Google Scholar 

  • Gatesy, J. 1997. More support for a Cetacea/Hippopotamidae clade: the blood-clotting protein gene γ-fibrinogen. Mol. Biol. Evol. 14:537–543.

    Article  PubMed  CAS  Google Scholar 

  • Gatesy, J., DeSalle, R., and Wheeler, W. 1993. Alignment-ambiguous nucleotide sites and the exclusion of systematic data. Mol. Phylogenet. Evol. 2:152–157.

    Article  PubMed  CAS  Google Scholar 

  • Gatesy, J., Hayashi, C., Cronin, M. A., and Arctander, P. 1996. Evidence from milk casein genes that cetaceans are close relatives of hippopotamid artiodactyls. Mol. Biol. Evol. 13:954–963.

    Article  PubMed  CAS  Google Scholar 

  • Gentry, A., and Hooker, J. 1988. The phylogeny of the Artiodactyla, in: M. Benton (ed.), The Phytogeny and Classification of the Tetrapods, Volume 2, pp. 25–272. Clarendon Press, Oxford.

    Google Scholar 

  • Gingerich, P. D., Smith, B. H., and Simons, E. L. 1990. Hand limbs of Eocene Basilosaurus isis: evidence of feet in whales. Science 249:154–157.

    Article  PubMed  CAS  Google Scholar 

  • Goboloff, P. 1993. Estimating character weights during tree search. Cladistics 9:83–91.

    Article  Google Scholar 

  • Goodman, M., Czelusniak, J., and Beeber, J. E. 1985. Phylogeny of primates and other eutherian orders: a cladistic analysis using amino acid and nucleotide sequence data. Cladistics 1:171–185.

    Article  Google Scholar 

  • Graur, D., and Higgins, D. G. 1994. Molecular evidence for the inclusion of cetaceans within the order Artiodactyla. Mol. Biol. Evol. 11:357–364.

    PubMed  CAS  Google Scholar 

  • Hasegawa, M., and Adachi, J. 1996. Phylogenetic position of cetaceans relative to artiodactyls: reanalysis of mi-tochondrial and nuclear sequences. Mol. Biol. Evol. 13:710–717.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa, M., Kishino, H., and Yano, T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22:160–174.

    Article  PubMed  CAS  Google Scholar 

  • Heyning, J. E., and Mead, J. G. 1990. Evolution of the nasal anatomy of cetaceans, in: J. Thomas and R. Kastelein (eds.), Sensory Abilities of Cetaceans, pp. 67–79. Plenum Press, New York.

    Google Scholar 

  • Irwin, D. M., Kocher, T. D., and Wilson, A. C. 1991. Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32:128–144.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D. T., Taylor, W. R., and Thornton, J. M. 1992. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8:275–282.

    PubMed  CAS  Google Scholar 

  • Kishino, H., and Hasegawa, M. 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J. Mol. Evol. 29:170–179.

    Article  PubMed  CAS  Google Scholar 

  • Kishino, H., Miyata, T., and Hasegawa, M. 1990. Maximum likelihood inference of protein phylogeny, and the origin of chloroplasts. J. Mol. Evol. 30:151–160.

    Article  Google Scholar 

  • Lockhart, P. J., Steel, M. A., Hendy, M. D., and Penny, D. 1994. Recovering evolutionary trees under a more realistic model of sequence evolution. Mol. Biol. Evol. 11:605–612.

    PubMed  CAS  Google Scholar 

  • Lyons-Weiler, J. 1997. RASA 2.1. Software and documentation for Macintosh. Distributed by the author; http://loco.biology.unr.edu/archives/rasa/rasa.html.

  • Lyons-Weiler, J., and Hoelzer, G. A. 1997. Escaping from the Felsenstein zone by detecting long branches in phylogenetic data. Mol. Phylogenet. Evol. 8(3):375–384.

    Article  PubMed  CAS  Google Scholar 

  • Lyons-Weiler, J., Hoelzer, G. A., and Tausch, R. J. 1996. Relative apparent synapomorphy analysis (RASA) I: the statistical measurement of phylogenetic signal. Mol. Biol. Evol. 13:749–757.

    Article  PubMed  CAS  Google Scholar 

  • Lyons-Weiler, J., Hoelzer, G. A., and Tausch, R. J. In press. Relative apparent synapomorphy analysis (RASA) II: optimal outgroup analysis. Biol. J. Unn. Soc.

    Google Scholar 

  • Milinkovitch, M. C. 1992. DNA-DNA hybridizations support ungulate ancestry of Cetacea. J. Evol. Biol. 5:149–160.

    Article  Google Scholar 

  • Milinkovitch, M. C. 1994. Phylogenetic analyses of molecular data in vertebrates with special emphasis on the implications of mitochondrial DNA sequences for reevaluating morphological and behavioral evolution in cetaceans. Ph.D. thesis, Brussels Free University.

    Google Scholar 

  • Milinkovitch, M. C. 1995. Molecular phytogeny of cetaceans prompts revision of morphological transformations. Trends Ecoi Evol. 10:328–334.

    Article  CAS  Google Scholar 

  • Milinkovitch, M. C. 1997. The phylogeny of whales: a molecular approach, in: A. E. Dizon, S. J. Olivers, and W. F. Perrin (eds.), Molecular Genetics of Marine Mammals, pp. 317–338. Society for Marine Mammology, Lawrence, KS.

    Google Scholar 

  • Milinkovitch, M. C., and Thewissen, J. G. M. 1997. Eventoed fingerprints on whale ancestry. Nature 388:622–624.

    Article  CAS  Google Scholar 

  • Milinkovitch, M. C., Ortí, G., and Meyer, A. 1993. Revised phylogeny of whales suggested by mitochondrial ribosomal DNA sequences. Nature 361:346–348.

    Article  PubMed  CAS  Google Scholar 

  • Milinkovitch, M. C., Meyer, A., and Powell, J. R. 1994. Phylogeny of all major groups of cetaceans based on DNA sequences from three mitochondrial genes. Mol. Biol. Evol. 11:939–948.

    PubMed  CAS  Google Scholar 

  • Milinkovitch, M. C., Leduc, R. G., Adachi, J., Farnir, F., Georges, M., and Hasegawa, M. 1996. Effects of character weighting and species sampling on phylogeny reconstruction: a case study based on DNA sequence data in cetaceans. Genetics 144:1817–1833.

    PubMed  CAS  Google Scholar 

  • Montgelard, C., Catzeflis, F. M., and Douzery, E. 1997. Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. Mol. Biol. Evol. 14:550–559.

    Article  PubMed  CAS  Google Scholar 

  • Philippe, H., and Douzery, E. 1994. The pitfalls of molecular phylogeny based on four species, as illustrated by the Cetacea/Artiodactyla relationships. J. Mamm. Evol. 2:133–152.

    Article  Google Scholar 

  • Prothero, D. 1993. Ungulate phylogeny: molecular versus morphological evidence, in: F. Szalay, M. Novacek, and M. McKenna (eds.), Mammal Phylogeny, Volume 2, pp. 173–181. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Prothero, D., Manning, E., and Fischer, M. 1988. The phylogeny of the ungulates, in: M. J. Benton (ed.), The Phylogeny and Classification of the Tetrapods, Volume 2, pp. 201–234. Clarendon Press, Oxford.

    Google Scholar 

  • Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Shimamura, M., Yasue, H., Ohshima, K., Abe, H., Kato, H., Kishiro, T., Goto, M., Munechika, I., and Okada, N. 1997. Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388:666–671.

    Article  PubMed  CAS  Google Scholar 

  • Shoshani, J. 1986. Mammalian phylogeny: comparison of morphological and molecular results. Mol. Biol. Evol. 3:222–242.

    PubMed  CAS  Google Scholar 

  • Smith, M., Shivji, M., Waddell, V, and Stanhope, M. 1996. Phylogenetic evidence from the IRBP gene for the paraphyly of toothed whales, with mixed support for Cetacea as a suborder of artiodactyls. Mol. Biol. Evol. 13:918–922.

    Article  PubMed  CAS  Google Scholar 

  • Steel, M. 1994. Recovering a tree from the Markov leaf colourations it generates under a Markov model. Appl. Math. Lett. 7:19–23.

    Article  Google Scholar 

  • Strimmer, K., and von Haeseler, A. 1996. Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol. Biol. Evol. 13:964–969.

    Article  CAS  Google Scholar 

  • Strimmer, K., and von Haeseler, A. 1997a. PUZZLE 3.1, maximum likelihood analysis for nucleotide and amino acid alignments. Software and documentation distributed by the authors; http://www.zi.biologie.unimuenchen.devstrimmer/puzzle.html.

  • Strimmer, K., and von Haeseler, A. 1997b. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc. Natl. Acad. Sci. USA 94:6815–6819.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, J., and Swofford, D. L. In press. Uncertainty in estimating parameters of invariable-sites plus gamma models of rate heterogeneity: the effect of taxon sampling. Mol. Biol. Evol.

    Google Scholar 

  • Swofford, D. L. 1997. PAUP*: Phylogenetic Analysis Using Parsimony (and other methods), Versions 4.0d56, d57, d59, in progress. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Swofford, D. L., Olsen, G. J., Waddell, P. J., and Hillis, D. 1996. Phylogenetic inference, in: D. M. Hillis, C. Moritz, and B. K. Mable (eds.), Molecular Systematics, 2nd ed, pp. 407–514. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Theodor, J. M. 1996. Why do molecules and morphology conflict? Examination of the Artiodactyl-Cetacea relationship. J. Vertebr. Paleontol. 17(Suppl.):80A.

    Google Scholar 

  • Thewissen, J. G. M. 1994. Phylogenetic aspects of cetacean origins: a morphological perspective. J. Mamm. Evol. 2:157–184.

    Article  Google Scholar 

  • Thewissen, J. G. M., and Hussain, S. T. 1993. Origin of underwater hearing in whales. Nature 361:444–445.

    Article  PubMed  CAS  Google Scholar 

  • Thewissen, J. G. M., Madar, S. I., and Hussain, S. T. 1996. Ambulocetus natans, an Eocene cetacean (Mammalia) from Pakistan. Cour. Forsch.-Inst. Senckenberg 191:1–86.

    Google Scholar 

  • Thompson, J. D., Higgins, D. G., and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Vilotte, J.-L., Soulier, S., Mercier, J.-C, Gaye, P., Hue-Delahaie, D., and Furet, J.-P. 1987. Complete nucleotide sequence of α-lactalbumin gene: comparison with its rat counterpart. Biochimie 69:609–620.

    Article  PubMed  CAS  Google Scholar 

  • Waddell, P. J. 1995. Statistical methods of phylogenetic analysis, including Hadamar conjugations, LogDet transforms, and maximum likelihood. Ph.D. dissertation, Massey University.

    Google Scholar 

  • Wheeler, W. C. 1990. Nucleic acid sequence phylogeny and random outgroups. Cladistics 6:363–367.

    Article  Google Scholar 

  • Zhou, X., Zhai, R., Gingerich, P. D., and Chen, L. 1995. Skull of anew mesonychid (Mammalia, Mesonychia) from the late Paleocene of China. J. Vertebr. Paleontol. 15:387–400.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milinkovitch, M.C., Bérubé, M., Palsbøll, P.J. (1998). Cetaceans Are Highly Derived Artiodactyls. In: Thewissen, J.G.M. (eds) The Emergence of Whales. Advances in Vertebrate Paleobiology, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0159-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0159-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0161-3

  • Online ISBN: 978-1-4899-0159-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics