Skip to main content

Studies of Methane Monooxygenase and Alkane Oxidation Model Complexes

  • Chapter
Applications of Enzyme Biotechnology

Abstract

Among the recently delineated class of non-heme iron oxo proteins is the hydroxylase component of methane monooxygenase, an enzyme that catalyzes the conversion of methane to methanol according to eq. 1.1 Methane monooxygenases (MMOs) are found in methanotrophic bacteria

$$ C{H_4} + NADH + {H^ + } + {O_2} \to C{H_3}OH + NA{D^ + } + {H_2}O $$
((1))

that use methane as their sole source of carbon and energy.2 In this article we discuss mainly the results of studies that have been carried out on MMOs from the organisms Methylococcus capsulatus (Bath) and Methylosinus trichosporium OB3b. The soluble MMOs from both of these organisms contain two proteins in addition to the hydroxylase, a reductase with associated FAD and Fe2S2 prosthetic groups and a smaller polypeptide, designated protein B, that is believed to play a role in regulating electron transfer between the reductase and hydroxylase components.3, 4 The relative roles of these proteins in the overall MMO system are displayed in Figure 1. Most catalysts that effect the hydroxylation of alkanes by dioxygen are also able to catalyze the direct oxidation (autoxidation) of the reductant with dioxygen. The MMO system avoids this potential problem by physically isolating the hydroxylase and reductase functionalities on different proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Dalton, Oxidation of hydrocarbons by methane monooxygenases from a variety of microbes, Adv. Appl. Microbiol., 26:71 (1980).

    Article  CAS  Google Scholar 

  2. C. Anthony, “The biochemistry of methylotrophs,” Academic Press, London (1982).

    Google Scholar 

  3. J. Colby and H. Dalton, Resolution of the methane monooxygenase of Methylococcus capsulatus (Bath) into three components. Purification and properties of component C, a flavoprotein, Biochem. J., 171:461 (1978).

    PubMed  CAS  Google Scholar 

  4. B. G. Fox, W. A. Froland, J. E. Dege, and J. D. Lipscomb, Methane monooxygenase from Methylosinus trichosporium OB3b: purification and properties of a three component system with high specific activity from a Type II methanotroph, J. Biol. Chem., 264: 10023 (1989).

    PubMed  CAS  Google Scholar 

  5. B. G. Fox, Y. Liu, J. E. Dege, and J. D. Lipscomb, Complex formation between the protein components of methane monooxygenase from Methylosinus trichosporium OB3b, J. Biol. Chem., 266:540 (1991).

    PubMed  CAS  Google Scholar 

  6. A. C. Stainthorpe, J. C. Murrell, G. P. C. Salmond, and H. Dalton, Molecular analysis of methane monooxygenase from Methylococcus capsulatus (Bath), Arch. Microbiol., 152:154 (1989).

    Article  PubMed  CAS  Google Scholar 

  7. J. G. DeWitt, J. G. Bentsen, A. C. Rosenzweig, B. Hedman, J. Green, S. Pilkington, G. C. Papaefthymiou, H. Dalton, K. O. Hodgson, and S. J. Lippard, X-ray absorption, Mössbauer, and EPR studies of the dinuclear iron center in the hydroxylase component of methane monooxygenase, submitted for publication.

    Google Scholar 

  8. B. G. Fox and J. D. Lipscomb, Purification of a high specific activity methane monooxygenase hydroxylase component from a Type II methanotroph, Biochem. Biophys. Res. Commun., 154:165 (1989).

    Article  Google Scholar 

  9. J. B. Vincent, G. L. Olivier-Lilley, and B. A. Averill, Proteins containing oxo-bridged dinucleae iron centers: a bioinorganic perspective, Chem. Rev., 90:1447 (1990).

    Article  CAS  Google Scholar 

  10. J. Green and H. Dalton, Protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). A novel protein of enzyme activity, J. Biol. Chem., 260:15795 (1985).

    PubMed  CAS  Google Scholar 

  11. J. Lund and H. Dalton, Further characterisation of the FAD and Fe2S2 redox centres of component C, the NADH: acceptor reductase of the soluble methane monooxygenase of Methylococcus capsulatus (Bath), Eur. J. Biochem., 147:291 (1985).

    Article  PubMed  CAS  Google Scholar 

  12. W. E. Wu and S. J. Lippard, unpublished results.

    Google Scholar 

  13. S. J. Pilkington, G. P. C. Salmond, J. C. Murrell, and H. Dalton, Identification of the gene encoding the regulatory protein B of soluble methane monooxygenase, FEMS Microbiol. Lett, 72:345 (1990).

    Article  CAS  Google Scholar 

  14. W. E. Wu and S. J. Lippard, unpublished results.

    Google Scholar 

  15. A. C. Rosenzweig and S. J. Lippard, unpublished results.

    Google Scholar 

  16. A. C. Stainthorpe, V. Lees, G. P. C. Salmond, H. Dalton, and J. C. Murrell, The methane monooxygenase gene cluster of Methylococcus capsulatus (Bath), Gene, 91:27 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. A. Ericson, B. Hedman, K. O. Hodgson, J. Green, H. Dalton, J. G. Bentsen, R. H. Beer, and S. J. Lippard, Structural characterization by EXAFS spectroscopy of the binuclear iron center in protein A of methane monooxygenase from Methylococcus capsulatus (Bath), J. Am. Chem. Soc., 110:2330 (1988).

    Article  CAS  Google Scholar 

  18. W. H. Armstrong and S. J. Lippard, Reversible protonation of the oxo bridge in a hemerythrin model compound. Synthesis, structure, and properties of (μ-hydroxo) bis(μ-acetato)-bis[hydrotris(l-pyrazolyl)borato]diiron(III), [(HB(pz)3)Fe(OH)(O2CCH3)2Fe(HB(pz)3)]+, J. Am. Chem. Soc., 106:4632 (1984).

    Article  CAS  Google Scholar 

  19. W. H. Armstrong, A. Spool, G. C. Papaefthymiou, R. B. Frankel, and S. J. Lippard, Assembly and characterization of an accurate model for the diiron center in hemerythrin, J. Am. Chem. Soc., 106:3653 (1984)

    Article  CAS  Google Scholar 

  20. B. Hedman, M. S. Co, W. H. Armstrong, K. O. Hodgson, and S. J. Lippard, EXAFS studies of dinuclear iron complexes as models for hemerythrin and related proteins, Inorg. Chem., 25:3708 (1986).

    Article  CAS  Google Scholar 

  21. R. C. Prince, G. N. George, J. C. Savas, S. P. Cramer, and R. N. Patel, Spectroscopic properties of the hydroxylase of methane monooxygenase, Biochim. Biophys. Acta, 952:220 (1988).

    Article  PubMed  CAS  Google Scholar 

  22. X. Feng and S. J. Lippard, unpublished results.

    Google Scholar 

  23. P. J. Marini, K. S. Murray, and B. O. West, Iron complexes of N-substituted thiosalicylideneimines. Part 1. Synthesis and reactions with oxygen and carbon monoxide. J. Chem. Soc., Dalton Trans., 143 (1983).

    Google Scholar 

  24. B. P. Murch, F. C. Bradley, and L. Que, Jr., A dinuclear iron peroxide complex capable of olefin epoxidation, J. Am. Chem. Soc, 108:5027 (1986).

    Article  CAS  Google Scholar 

  25. Q. Chen, J. B. Lynch, P. Gomez-Romero, A. Ben-Hussein, G. B. Jameson, C. J. O’Connor, and L. Que, Jr., Iron oxo aggregates. Dinuclear and tetranuclear complexes of N, N, N’, N’-tetrakis(2-benzimidazolylmethyl)-2-hydroxy-1, 3-diaminopropanol, Inorg. Chem., 27:2673 (1988).

    Article  CAS  Google Scholar 

  26. S. Yan, D. D. Cox, L. L. Pearce, C. Juarez-Garcia, L. Que, Jr., J. H. Zhange, and C. J. O’ Connor, A(μ-oxo)(μ-carboxylato)diiron(III) complex with distinct iron sites, Inorg. Chem., 28:2507 (1989).

    Article  CAS  Google Scholar 

  27. F. Arena, C. Floriani, A. Chiesi-Villa, C. Guastini, A mixed valence μ-oxo iron(III)-iron(III) complex: a polynuclear iron-sodium-oxo aggregate from the chemical reduction of a μ-oxo diiron(III) complex, J. Chem. Soc, Chem. Commun., 1369 (1986).

    Google Scholar 

  28. W. B. Tolman, A. Bino, and S. J. Lippard, Self-assembly and dioxygen reactivity of an asymmetric, triply bridged diiron(II) complex with imidazole ligands and an open coordination site, J. Am. Chem. Soc, 111:8522 (1989).

    Article  CAS  Google Scholar 

  29. D. M. Kurtz, Oxo-and hydroxo-bridged diiron complexes: a chemical perspective on a biological unit, Chem. Rev., 90:585 (1990).

    Article  CAS  Google Scholar 

  30. A. C. Rosenzweig, C. Bender, J. Peisach, and S. J. Lippard, unpublished results.

    Google Scholar 

  31. W. B. Tolman, S. Liu, J. G. Bentsen, and S. J. Lippard, Models of the reduced forms of polyiron oxo proteins: an asymmetric, triply carboxylate bridged diiron(II) complex and its reaction with dioxygen, J. Am. Chem. Soc, 113:152 (1991).

    Article  CAS  Google Scholar 

  32. A. S. Borovik and L. Que, Jr., Models for the FeIIFeIII and FeIIFeII forms of iron-oxo proteins, J. Am. Chem. Soc., 110:2345 (1988).

    Article  CAS  Google Scholar 

  33. K. E. Liu and S. J. Lippard, Redox properties of the hydroxylase component of methane monooxygenase from Methylococcus capsulatus (Bath)-effects of protein B, reductase, and substrate, J. Biol. Chem., in press.

    Google Scholar 

  34. A. Stassinopoulos, G. Schulte, G. C. Papaefthymiou, and J. P. Caradonna, Synthesis, structure, and electronic characterization of reactive diiron(II) 1, 2-bis-(2-hydroxybenzamido)benzene complexes as models for methane monooxygenase, submitted for publication.

    Google Scholar 

  35. P. Cofré, S. A. Richert, A. Sobkowjak, and D. T. Sawyer, Redox chemistry of iron picolinate complexes and of their hydrogen peroxide and dioxygen adducts, Inorg. Chem., 29:2645 (1990).

    Article  Google Scholar 

  36. X. Feng and S. J. Lippard, unpublished results.

    Google Scholar 

  37. W. Micklitz, S. G. Bott, J. G. Bentsen, and S. J. Lippard, Characterization of a novel μ4-peroxide tetrairon unit of possible relevance to intermediates in metal-catalyzed oxidations of water to dioxygen, J. Am. Chem. Soc., 111:372 (1989).

    Article  CAS  Google Scholar 

  38. N. Kitajima, H. Fukui, Y. Moro-oka, Y. Mizutani and T. Kitagawa, Synthetic model for dioxygen binding sites of non-heme iron proteins: X-ray structure of Fe(OBz)(MeCN)(HB(3, 5-iPr2pz)3 and resonance Raman evidence for reversible formation of peroxo adduct, J. Am. Chem. Soc., 112:6402 (1990).

    Article  CAS  Google Scholar 

  39. S. Menage, B. A. Brennan, C. Juarez-Garcia, E. Münck, and L. Que, Jr., Models for iron-oxo proteins: Dioxygen binding to a diferrous complex, J. Am. Chem. Soc, 112:6423 (1990).

    Article  CAS  Google Scholar 

  40. X. Feng, M. E. Roth, D. P. Bancroft, and S. J. Lippard, manuscript to be submitted.

    Google Scholar 

  41. N. Kitajima, H. Fukui, and Y. Moro-oka, A model for methane monooxygenase: Dioxygen oxidation of alkanes by use of a μ-oxo dinuclear iron complex, J. Chem. Soc, Chem Commun., 485 (1988).

    Google Scholar 

  42. J. B. Vincent, J. C. Huffman, G. Christou, Q. Li, M. A. Nanny, D. N. Hendrickson, R. H. Fong, and R. H. Fish, Modeling the dinuclear sites of iron biomolecules: Synthesis and properties of Fe2O(OAc)2Cl2(bipy)2 and its use as an alkane activation catalyst, J. Am. Chem. Soc., 110:6898 (1988).

    Article  CAS  Google Scholar 

  43. G. Balavoine, D. H. R. Barton, J. Boivin, A. Gref, P. L. Coupanec, N. Ozbalik, J. A. X. Pestana, and H. Riviere, Functionalization of saturated hydrocarbons. Part X. A comparative study of chemical and electrochemical processes (GIF and GIF-Orsay systems) in pyridine, in acetone and in pyridine-co-solvent mixtures, Tetrahedron, 44:1091 (1988).

    Article  CAS  Google Scholar 

  44. S. Inbar, A. Ehret, and K. Norland, Oxidation of tetramethyl reductic acid by silver halide, Abstracts of Papers, Natl. Meet. Soc. Photogr. Sci., Minneapolis, MN, USA (1987).

    Google Scholar 

  45. G. A. Hamilton, R. J. Workman, and L. Woo, Oxidation by molecular oxygen. I. Reaction of a possible model system for mixed-function oxidases, J. Am. Chem. Soc, 86:3390 (1964).

    Article  CAS  Google Scholar 

  46. G. A. Russel, Reactivity, selectivity, and polar effects in hydrogen atom transfer reaction, in “Free Radicals”, J. K. Kochi Ed., Wiley: New York, Vol. I:pp. 275 (1973).

    Google Scholar 

  47. J. Green and H. Dalton, Substrate specificity of soluble methane monooxygenase, J. Biol. Chem., 264: 17698 (1989).

    PubMed  CAS  Google Scholar 

  48. J. T. Groves, Mechanisms of metal-catalysed oxygen insertion, in “Metal Ion Activation of Dioxygen”, T. G. Spiro ed., Wiley: New York, pp. 125 (1980).

    Google Scholar 

  49. J. T. Groves, and D. V. Subramanian, Hydroxylation by cytochrome P-450 and metalloporphyrin models. Evidence for allylic rearrangement, J. Am. Chem. Soc., 106:2177 (1984).

    Article  CAS  Google Scholar 

  50. C. R. E. Jefcoate, J. R. L. Smith, and R. O. C. Norman, Hydroxylation. Part IV. Oxidation of some benzenoid compounds by Fenton’s reagent and the ultraviolet irradiation of hydrogen peroxide. J. Chem. Soc. B:1013 (1969).

    Google Scholar 

  51. J. T. Groves and T. E. Nemo, Aliphatic hydroxylation catalyzed by iron porphyrin complexes. J. Am. Chem. Soc, 105:6243 (1983).

    Article  CAS  Google Scholar 

  52. D. H. R. Barton, J. Boivin, N. Ozbalik and K. M. Schwartzentruber, On the mechanism of the Gif system for the oxidation of saturated hydrocarbons, Tetrahedron Lett., 26:447 (1985).

    Article  CAS  Google Scholar 

  53. S. G. Jezequel and I. J. Higgins, Mechanistic aspects of biotransformations by the monooxygenase system of M. trichosporium OB3b, J. Chem. Tech. Biotechnol., 33B:139 (1983).

    CAS  Google Scholar 

  54. H. Dalton and D. J. Leak, Mechanistic studies on the mode of action of methane monooxygenase, in “Gas Enzymology”, H. Degn, R. P. Cox, and H. Toftlund eds., Reidel: Dordrecht, Holland, pp. 169 (1985).

    Chapter  Google Scholar 

  55. S. R. Boone, G. H. Purser, H. R. Chang, M. D. Lowery, D. N. Hendrickson, and C. G. Pierpont, Magnetic exchange interactions in semiquinone complexes of iron. Structural and magnetic properties of Tris(3, 5-di-tert-utylsemiquinonato)tetrakis(3, 5-di-tert-butylcatecholato) tetrairon (III), J. Am. Chem. Soc, 111:2292 (1989).

    Article  CAS  Google Scholar 

  56. R. M. Solbrig, L. L. Duff, D. F. Shriver, and I. M. Klotz, Raman and infrared spectroscopy of the oxo-bridged iron (III) complex, [Cl3Fe-O-FeCl3]2- as a spectroscopic model for the oxo bridge in hemerythrin and ribonucleotide reductase, J. Inorg. Biochem., 17:69 (1982).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosenzweig, A.C., Feng, X., Lippard, S.J. (1991). Studies of Methane Monooxygenase and Alkane Oxidation Model Complexes. In: Kelly, J.W., Baldwin, T.O. (eds) Applications of Enzyme Biotechnology. Industry-University Cooperative Chemistry Program Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9235-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9235-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9237-9

  • Online ISBN: 978-1-4757-9235-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics