Skip to main content

MBE Growth of Custom-Designed III-V Semiconductor Microstructures Scaled to the Physical Limit: Ultrathin-Layer Superlattices and Monolayer Doping

  • Chapter
Spectroscopy of Semiconductor Microstructures

Part of the book series: NATO ASI Series ((NSSB,volume 206))

  • 203 Accesses

Abstract

Molecular beam epitaxy (MBE) of custom-designed microstructures has reached a status where monolayer dimensions in artificially layered semi­conductors are being routinely controlled to form a new clls of materials with accurately tailored electrical and optical properties1,2. The unique capabilities of molecular beam epitaxy in terms of spatially resolved ma­terials synthesis has stimulated the inspiration of device engineers to design a whole new generation of electronic and photonic devices based on the concept of band gap engineering3,4. This concept, also called wavefunc­tion or density-of-states engineering5,6, respectively, relies on the ar­bitrary modulation of band-edge potentials in semiconductors through the abrupt change of composition (e.g. GaAs/AlAs, GaSb/InAs, Si/Ge, etc.) or of dopant concentration. The microscopic structuring or engineering of se­miconducting solids to within atomic dimensions is thus achieved by the incorporation of interfaces (consisting of abrupt homo- or heterojunctions) into a crystal in well-defined geometrical and spatial arrangements. The electrical and optical properties are then defined locally, and phenomena related to extremely small dimensions (“quantum size effects”) become more important than the actual chemical properties of the materials involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.Y. Cho and J.R. Arthur, Progr. Solid State Chem. 10, 157 (1975)

    Article  Google Scholar 

  2. K. Ploog, Angew. Chem. Int. Ed. Engl. 27, 593 (1988)

    Article  Google Scholar 

  3. H. Sakaki, Proc. Int. Symp. Foundations of Quantum Mechanics, Tokyo 1983, p. 94

    Google Scholar 

  4. F. Capasso, Science 235, 172 (1987)

    Article  ADS  Google Scholar 

  5. A.C. Gossard, Treat. Mater. Sci. Technol. 24, 13 (1981)

    Google Scholar 

  6. B.A. Joyce, Rep. Progr. Phys. 48, 1637 (1985)

    Article  ADS  Google Scholar 

  7. L.L. Chang and K. Ploog (Eds.), Molecular Beam Epitaxy and Hetero-structures (Martinus Nijhoff, Dordrecht, 1985) NATO Adv. Sci. Inst. Ser. E 87 (1985)

    Google Scholar 

  8. E.H.C. Parker (Ed.), The Technology and Physics of Molecular Beam Epitaxy ( Plenum Press, New York, 1985 )

    Google Scholar 

  9. T. Sakamoto, H. Funabashi, K. Ohta, T. Nakagawa, N.J. Kawai, T. Kojima, and K. Bando, Superlatt. Microstruct. 1, 347 (1985)

    Article  ADS  Google Scholar 

  10. B.A. Joyce, P.J. Dobson, J.H. Neave, K. Woodbridge, J. Zhang, P.K. Larsen, and B. Bôlger, Surf. Sci. 168, 423 (1986)

    Article  ADS  Google Scholar 

  11. B.A. Joyce, J. Zhang, J.H. Neave, and P.J. Dobson, Appl. Phys. A45, 255 (1988)

    Article  Google Scholar 

  12. F. Briones, D. Golmayo, L. Gonzales, and A. Ruiz, J. Cryst. Growth 81, 19 (1987)

    Article  ADS  Google Scholar 

  13. M. Kohl, D. Heitmann, S. Tarucha, K. Leo, and K. Ploog, Phys. Rev. B 39, 7736 (1989)

    Article  ADS  Google Scholar 

  14. S. Tarucha and K. Ploog, Phys. Rev. B 39, 5353 (1989)

    Article  ADS  Google Scholar 

  15. Y. Horikoshi and M. Kawashima, J. Cryst. Growth 95, 17 (1989)

    Article  ADS  Google Scholar 

  16. F. Briones, L. Gonzales, and A. Ruiz, Appl. Phys. A 49, (1989)

    Google Scholar 

  17. Y. Suzuki and H. Okamoto, J. Appl. Phys. 58, 3456 (1985)

    Article  ADS  Google Scholar 

  18. E.F. Schubert and K. Ploog, Phys. Rev. B 30, 7021 (1984)

    Article  ADS  Google Scholar 

  19. R. Dingle, R.A. Logan, and J.R. Arthur, Inst. Phys. Conf. Ser. 33a, 210 (1977)

    Google Scholar 

  20. M.D. Camras, N. Holonyak, K. Hess, J.J. Coleman, R.D. Burnham, and D.R. Scifres, Appl. Phys. Lett. 41, 317 (1982)

    Article  ADS  Google Scholar 

  21. M. Nakayama, K. Kubota, H. Kato, S. Chika, and N. Sano, Solid State Commun. 53, 493 (1985)

    Article  ADS  Google Scholar 

  22. T. Isu, D.S. Jiang, and K. Ploog, Appl. Phys. A 43, 75 (1987)

    Article  ADS  Google Scholar 

  23. L. Esaki and R. Tsu, IBM J. Res. Develop. 14, 61 (1970)

    Article  Google Scholar 

  24. G. Bastard, Wavemechanics Applied to Semiconductor Heterostructures (Les Editions de Physique, Les Ulis, France, 1988 )

    Google Scholar 

  25. J. Nagle, M. Garriga, W. Stolz, T. Isu, and K. Ploog, J. Physique 48, Colloque C5, C5–495 (1987)

    Google Scholar 

  26. R. Cingolani, M. Ferrara, L. Baldassarre, M. Lugara, and K. Ploog, Phys. Rev. B 40, (1989)

    Google Scholar 

  27. G.H. Li, D.S. Jiang, H.X. Han, Z.P. Wang, and K. Ploog, Phys. Rev. B 40, (1989)

    Google Scholar 

  28. L. Tapfer and K. Ploog, Phys. Rev. B 33, 5565 (1986)

    Article  ADS  Google Scholar 

  29. G. Peter, E.O. Göbel, W.W. Rühle, J. Nagle, and K. Ploog, Superlatt. Microstruct. 5, 197 (1989)

    Article  ADS  Google Scholar 

  30. J.B. Xia, Phys. Rev. B 38, 8358 (1988)

    Article  ADS  Google Scholar 

  31. M.H. Meynadier, R.E. Nahory, J.M. Worlock, M.C. Tamargo, J.L. de Miguel, and M.D. Sturge, Phys. Rev. Lett. 60, 1338 (1988)

    Article  ADS  Google Scholar 

  32. J. Feldmann, R. Sattmann, E.O. Göbel, J. Kuhl, J. Hebling, K. Ploog, R. Muralidharan, P. Dawson, and C.T. Foxon, Phys. Rev. Lett. 61, 1892 (1989)

    Article  ADS  Google Scholar 

  33. K. Ploog, M. Hauser, and A. Fischer, Appl. Phys. A 45, 233 (1988)

    Article  ADS  Google Scholar 

  34. A. Zrenner, H. Reisinger, F. Koch, and K. Ploog. Semicond., Eds. J.D. Chadi and W.A. Harrison ( Springer, New York, 1985 ) p. 325

    Google Scholar 

  35. E.F. Schubert and K. Ploog, Jpn. J. Appl. Phys. 25, 966 (1985); E.F. Schubert, J.B. Stark, B. Ullrich, and J.E. Cunningham, Appl. Phys. Lett. 52, 1508 (1988)

    Google Scholar 

  36. A. Zrenner, F. Koch, R.L. Williams, R.A. Stradling, K. Ploog, and G. Weimann, Semicond. Sci. Technol. 3, 1203 (1988)

    Article  ADS  Google Scholar 

  37. A. Zrenner, Appl. Phys. Lett. 54, (1989)

    Google Scholar 

  38. R.B. Beall, J.B. Clegg, and J.J. Harris, Semicond. Sci. Technol. 3, 612 (1988)

    Article  ADS  Google Scholar 

  39. M. Ramsteiner, J. Wagner, H. Ennen, and M. Maier, Phys. Rev. B 38, 10669 (1988); J. Wagner, M. Ramsteiner, W. Stolz, M. Hauser, and K. Ploog, Appl. Phys. Lett. 55, (1989)

    Google Scholar 

  40. E.F. Schubert, A. Fischer, and K. Ploog, IEEE Trans. Electron Devices ED-33, 625 (1986)

    Google Scholar 

  41. A. Ishibashi, K. Funato, and Y. Mori, Electron. Lett. 24, 1034 (1988)

    Article  Google Scholar 

  42. Y. Horikoshi, A. Fischer, E.F. Schubert, and K. Ploog, Jpn. J. Appl. Phys. 26, 263 (1987)

    Article  ADS  Google Scholar 

  43. B. Etienne and E. Paris, J. Physique 48, 2049 (1987)

    Article  Google Scholar 

  44. J.P. Eisenstein, H.L. Störmer, L Pfeiffer, and K.W. West, Phys. Rev. Lett. 62, 1540 (1989); L. Pfeiffer, unpublished results (1988)

    Article  ADS  Google Scholar 

  45. R.J. Haug, R.R. Gerhardts, K. von Klitzing, and K. Ploog, Phys. Rev. Lett. 59, 1349 (1987)

    Article  ADS  Google Scholar 

  46. I.V. Kukushkin, K. von Klitzing, K. Ploog, and V.B. Timofeev, Phys. Rev. B 40, (1989)

    Google Scholar 

  47. I.V. Kukushkin, V.B. Timofeev, K. von Klitzing, and K. Ploog, Festkörperprobleme (Adv. Solid State Phys.) 28, Ed. U. Rössler ( Vieweg, Braunschweig, 1988 ) p. 21

    Google Scholar 

  48. K. Eberl, M. Bichler, and G. Abstreiter, paper presented during EURO MBE 89, 5–8 March 1989, Grainau (FRG).

    Google Scholar 

  49. S. Tiwari, S.L. Wright, and J. Batey, IEEE Electron Device Lett. EDL-9, 488 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ploog, K. (1989). MBE Growth of Custom-Designed III-V Semiconductor Microstructures Scaled to the Physical Limit: Ultrathin-Layer Superlattices and Monolayer Doping. In: Fasol, G., Fasolino, A., Lugli, P. (eds) Spectroscopy of Semiconductor Microstructures. NATO ASI Series, vol 206. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6565-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6565-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6567-0

  • Online ISBN: 978-1-4757-6565-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics