Skip to main content

Post-Transcriptional Control of the GAP-43 mRNA by the ELAV-Like Protein HuD

  • Chapter
RNA Binding Proteins

Part of the book series: Endocrine Updates ((ENDO,volume 16))

  • 236 Accesses

Abstract

Post-transcriptional control by mRNA-binding proteins is critical for shaping the temporal and spatial pattern of expression of a large number of developmentally regulated genes. Among these is the gene for GAP-43, a growth-associated protein expressed in neurons primarily during the initial establishment and remodeling of neural connections. Both transcriptional and post-transcriptional mechanisms control GAP-43 gene expression during development. While promoter activity determines the neural-specific expression of the gene, changes in mRNA stability modulate GAP-43 expression in neurons undergoing process outgrowth in response to growth factors and other signaling agents. For example, in PC12 cells induced to differentiate by nerve growth factor (NGF), GAP-43 mRNA levels are regulated primarily through selective changes in the rate of degradation of the mRNA. This process depends on the activation of protein kinase C (PKC) and is mediated by the interaction of highly conserved sequences in the 3’ untranslated region (3 ‘UTR) of the mRNA with neuronal-specific RNA-binding proteins. One of these proteins was recently identified as the ELAV-like protein HuD. SLAV is an RNA-binding protein that is critical for the development of the nervous system in Drosophila and HuD is one of four human homologs of this protein. This chapter discusses the evidence demonstrating a role for HuD in the control of GAP-43 mRNA stability, gene expression and neuronal differentiation, and presents recent findings on the molecular mechanisms underlying these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Skene, J.H.P. 1989. Axonal growth associated proteins. Ann. Rev. Neurosci. 12: 127–156.

    Article  PubMed  CAS  Google Scholar 

  2. Benowitz, L.I., and Routtenberg, A. 1997. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 20: 84–91.

    Article  PubMed  CAS  Google Scholar 

  3. Oestreicher, A.B., DeGraan, P.N.E., Gispen, W.H., Verhaagen, J., and Schrama, H. 1997. B-50, the growth-associated protein-43: modulation of cell morphology and communication in the nervous system. Prog. Neurobiol. 53: 627–686.

    Article  PubMed  CAS  Google Scholar 

  4. Chiaramello, A., Neuman, T., Reavy, D.R., and Zuber, M.X. 1996. The GAP-43 gene is a direct downstream target of the basic helix-loop-helix transcription factors. J. Biol. Chem. 271: 22035–22043.

    Article  PubMed  CAS  Google Scholar 

  5. Kinney, M., MacNamara, R.K., Valcourt, E., and Routtenberg, A. 1996. Prolonged alteration in E box binding after a single kainate injection: potential relation to F1/GAP43 gene expression. Brain Res. Mol. Brain Res. 38: 25–36.

    CAS  Google Scholar 

  6. Federoff, H.J., Grabczyk, E., and Fishman, M.C. 1988. Dual regulation of GAP-43 gene expression by nerve growth factor and glucocorticoids. J. Biol. Chem. 263: 19290–19295.

    PubMed  CAS  Google Scholar 

  7. Perrone-Bizzozero, N.I., Neve, R.L., Irwin, N., Lewis, S., Fischer, I., and Benowitz, L.I. 1991. Post-transcriptional regulation of GAP-43 mRNA levels during neuronal differentiation and nerve regeneration. Mol. Cell Neurosci. 2: 402–409.

    Article  PubMed  CAS  Google Scholar 

  8. Cantallops, I., and Routtenberg, A. 1999. Activity-dependent regulation of axonal growth: posttranscriptional control of the GAP-43 gene by the NMDA receptor in developing hippocampus. J. Neurobiol. 41: 208–20.

    Article  PubMed  CAS  Google Scholar 

  9. Namgung, U., and Routtenberg, A. 2000. Transcriptional and post-transcriptional regulation of a brain growth protein: regional differentiation and regeneration induction of GAP-43. Eur. J. Neurosci. 12: 3124–3136.

    Article  PubMed  CAS  Google Scholar 

  10. Perrone-Bizzozero, N.I., Cansino, V.V., and Kohn, D.T. 1993. Post-transcriptional regulation of GAP-43 gene expression in PC12 cells through PKC-dependent stabilization of the mRNA. J. Cell Biol. 120: 1263–1270.

    Article  PubMed  CAS  Google Scholar 

  11. Nedivi, E., Basi, G.S., Akey, I.V., and Skene, J.H.P. 1992. A neural-specific GAP-43 core promotor located between unusual DNA elements that regulate its activity. J. Neurosci. 12: 691–704.

    PubMed  CAS  Google Scholar 

  12. Eggen, B.J.L., Nielander, H.B., Rensen-DeLeeuw, M.G.A., Schotman, P., Gispen, W.H., and Schrama L.H. 1994. Identification of two promotor regions in the rat B-50/GAP-43 gene. Brain Res. Mol. Brain Res. 23: 221–234.

    Article  PubMed  CAS  Google Scholar 

  13. Wilson, T., and Treisman, R. 1988. Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3’ AU-rich sequences. Nature. 336: 396–399.

    Article  PubMed  CAS  Google Scholar 

  14. Brewer, G., and Ross, J. 1990. Messenger RNA turnover in cell-free extracts. Meth Enzymol. 18: 203–209.

    Google Scholar 

  15. Shaw, G., and Kamen, R. 1986. A conserved AU sequence in the 3’ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell. 46: 659–667.

    Article  PubMed  CAS  Google Scholar 

  16. Kohn, D.T., Tsai, K.-C., Cansino, V.V., Neve, R.L., and Perrone-Bizzozero, N.I. 1996. Role of highly conserved pyrimidine-rich sequences in the 3’ untranslated region of the GAP-43 mRNA in mRNA stability and RNA-protein interactions. Brain Res. Mol. Brain Res. 36: 240–250.

    Article  PubMed  CAS  Google Scholar 

  17. Tsai, K., Cansino, V.V., Kohn, D.T., Neve, R.L., and Perrone-Bizzozero, N.I. 1997. Post-transcriptional regulation of the GAP-43 gene by specific sequences in the 3’ untranslated region of the mRNA. J. Neurosci. 17: 1950–1958.

    PubMed  CAS  Google Scholar 

  18. Peng, S.S., Chen, C.A., and Shyu, A. 1996. Functional characterization of a nonAUUUA AU-rich element from the c-jun proto-oncogene mRNA: evidence for a novel class of AU-rich elements. Mol. Cell Biol. 16: 1490–1499.

    PubMed  CAS  Google Scholar 

  19. Zaidi, S.H., Denman, R., and Malter, J.S. 1994. Multiple proteins interact at a unique cis-element in the 3’-untranslated region of amyloid precursor protein mRNA. J. Biol. Chem. 269: 24000–24006.

    PubMed  CAS  Google Scholar 

  20. Zaidi, S.H., and Malter, J.S. 1995. Nucleolin and heterogenous nuclear ribonucleoprotein C proteins specifically interact with the 3’-untranslated region of amyloid protein precursor mRNA. J. Biol. Chem. 270: 17292–17298.

    Article  PubMed  CAS  Google Scholar 

  21. Irwin, N., Baekelandt, V., Goritchenko, L., and Benowitz, L.I. 1997. Identification of two proteins that bind to a pyrimidine-rich sequence in the 3’-untranslated region of GAP-43 mRNA. Nucleic Acids Res. 25: 1281–1288.

    Article  PubMed  CAS  Google Scholar 

  22. DeFranco, C., Chicurel, M.E., and Potter, H. 1998. A general RNA-binding protein complex that includes the cytoskeleton-associated protein MAP lA. Mol. Biol. Cell. 9: 1695–1708.

    Google Scholar 

  23. Chung, S.M., Eckrich, M., Perrone-Bizzozero, N.I., Kohn, D.T., and Furneaux, H.M. 1997. The Elav-like proteins bind to a conserved regulatory element in the 3’ untranslated region of GAP-43 mRNA. J. Biol. Chem. 272: 6593–6598.

    Article  PubMed  CAS  Google Scholar 

  24. Mobarak, C.M., Anderson, K.D., Morin, M., Beckel-Mitchener, A., Rogers, S., Furneaux, H. M., King P., and Perrone-Bizzozero, N. I. 2000. The RNA-binding protein HuD is required GAP-43 mRNA stability, GAP-43 gene expression and PKC-dependent neurite outgrowth in PC12 cells. Mol. Biol.Cell. 11: 3191–3203.

    PubMed  CAS  Google Scholar 

  25. Fan, X.C., and Steitz, J.A. 1998. Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO. J. 17: 3448–3460.

    CAS  Google Scholar 

  26. Chung, S., Jiang, L., Cheng, S., and Furneaux, H.M. 1996. Purification and properties of HuD, a neuronal RNA binding protein. J. Biol. Chem. 271: 11518–11524.

    Article  PubMed  CAS  Google Scholar 

  27. Aranda-Abreu, G.E., Behar, L., Chung, S., Furneaux, H., and Ginzburg, I. 1999. Embryonic lethal abnormal vision-like RNA-binding proteins regulate neurite outgrowth and tau expression in PC12 cells. J. Neurosci. 19: 6907–6917.

    PubMed  CAS  Google Scholar 

  28. Joseph, B., Orlian, M., and Furneaux, H. 1998. p21(wafl) mRNA contains a conserved element in its 3’-untranslated region that is bound by the ELAV-like mRNA-stabilizing proteins. J. Biol. Chem. 273: 20511–20516.

    Google Scholar 

  29. Lazarova, D.L., Spengler, B.A., Biedler, J.L., and Ross, R.A. 1999. HuD, a neuronal-specific RNA-binding protein, is a putative regulator of n-myc pre-mRNA processing/stability in malignant human neuroblasts. Oncogene. 18: 2703–2710.

    Article  PubMed  CAS  Google Scholar 

  30. Ma, W., Chung, S., and Furneaux, H. 1997. The Elav-like proteins bind to AU-rich elements and to the poly(A) tail of mRNA. Nucleic Acid Res. 25: 3564–3569.

    Article  PubMed  CAS  Google Scholar 

  31. Campos, A.R., Grossman, D., and White, K. 1985. Mutant alleles at the locus elav in Drosophila melanogaster lead to nervous system defects. A developmental-genetic analysis. J. Neurogenet. 2: 197–218.

    Article  PubMed  CAS  Google Scholar 

  32. Robinow, S., Campos, A.R., Yao, K.M., and White, K. 1988. The elav gene product of Drosophila, required in neurons, has three RNP consensus motifs. Science. 242: 1570–1572.

    Article  PubMed  CAS  Google Scholar 

  33. Homyk, T., Isono, K., and Pak, W.L. 1985. Developmental and physiological analysis of a conditional mutation affecting photoreceptor and optic lobe development in Drosophila melanogaster. J. Neurogenet. 2: 309–324.

    Article  Google Scholar 

  34. Koushika, S.P., Lisbin, M.J., and White, K. 1996. ELAV, a Drosophila neuron-specific protein, mediates the generation of an alternatively spliced neural protein isoform. Current Biology. 6: 1643–1641.

    Article  Google Scholar 

  35. Samson, M. 1998. Evidence for 3’ untranslated region-dependent autoregulation of the Drosophila gene encoding the neuronal nuclear RNA-binding protein ELAV. Genetics. 150: 723–733.

    PubMed  CAS  Google Scholar 

  36. Marusich, M.F., Furneaux, H.M., Henion, P., and Weston, J.A. 1994. Hu neuronal proteins are expressed in proliferating neurogenic cells. J. Neurobiol. 25: 143–155.

    Article  PubMed  CAS  Google Scholar 

  37. Wakamatsu, Y., and Weston, J.A. 1997. Sequential expression and role of Hu RNA binding proteins during neurogenesis. Development. 124: 3449–3460.

    PubMed  CAS  Google Scholar 

  38. Okano, H.J., and Darnell, R.B. 1997. Heirarchy of Hu RNA binding proteins in developing and adult neurons. J Neurosci. 17: 3024–3037.

    PubMed  CAS  Google Scholar 

  39. Clayton, G.H., Perez, G.M., Smith, R.L., and Owens, G.C. 1998. Expression of mRNA for the ELAV-like neural-specific RNA binding protein, HuD, during nervous system development. Brain Res. Dev. Brain Res. 109: 271–80.

    Article  PubMed  CAS  Google Scholar 

  40. Perrone-Bizzozero, N. I., Thomas, D., Harji, F., Saland, L., Lynn, S., Hassinger, L., and Neve, R.L. 1999. Molecular and cytoarchitectural alterations in the hippocampus of patients with schizophrenia revealed by immunostaining against HuD, GAP-43 and other neuronal markers. Schizophrenia Res. (Suppl.) 36: 83.

    Google Scholar 

  41. Antic, D., and Keene, J.D. 1998. Messenger ribonucleoprotein complexes containing human Elav proteins: interactions with cytoskeleton and translational apparatus. J Cell Sci. 111: 183–197.

    PubMed  CAS  Google Scholar 

  42. Antic, D., Lu, N., and Keene, J.D. 1999. ELAV tumor antigen, Hel-N1, increases translation of neurofilament M mRNA and induces formation of neurites in human teratocarcinoma cells. Gene Dev. 13: 449–461.

    Article  PubMed  CAS  Google Scholar 

  43. Anderson, K.D., Morin, M.A, Beckel-Mitchener, A., Mobarak, C.D., Neve, R. L., Furneaux, H. M., Burry, R.M., and Perrone-Bizzozero, N.I. 2000. Overexpression of HuD, but not its truncated form HuD I+II, promotes GAP-43 expression and neurite outgrowth in PC12 cells in the absence of nerve growth factor. J Neurochem. 75: 1103–1114.

    Article  PubMed  CAS  Google Scholar 

  44. Akamatsu W. et al. 1999. Mammalian ELAV-like neuronal RNA-binding proteins HuB and HuC promote neuronal development in both the central and the peripheral nervous systems. Proc. Natl. Acad. Sci. USA. 96: 9885–9890.

    Article  PubMed  CAS  Google Scholar 

  45. Kasashima, K., Terashima, K., Yamamoto, K., Sakashita, E., and Sakamoto, H. 1999. Cytoplasmic localization is required for the mammalian ELAV-like protein HuD to induce neuronal differentiation. Genes Cells. 4: 667–683.

    Article  PubMed  CAS  Google Scholar 

  46. Anderson, K. D., Sengupta, J., Morin, M., Neve, R. L., Valenzuela, C. F., and PerroneBizzozero, N. I. 2001. Overexpression of HuD accelerates neurite outgrowth and increases GAP-43 mRNA expression in neurons and retinoic acid-induced embryonic stem cells in vitro. Exp. Neurol., 168: 250–258.

    Article  CAS  Google Scholar 

  47. Neve, R.L., Ivins, K.J., Tsai, K.C., Rogers, S.L., and Perrone-Bizzozero, N.I. 1999. Cis-acting regulatory elements in the GAP-43 mRNA 3’-untranslated region can function in trans to suppress endogenous GAP-43 gene expression. Brain Res. Mol. Brain Res. 65: 52–60.

    CAS  Google Scholar 

  48. Beelman, C.A., and Parker, R. 1995. Degradation of mRNA in eukaryotes. Cell. 81: 179–183

    Article  PubMed  CAS  Google Scholar 

  49. Muhlrad, D., and Parker, R. 1994. Premature translational termination triggers mRNA decapping. Nature. 370: 578–581.

    Article  PubMed  CAS  Google Scholar 

  50. Tucker, M., and Parker, R. 2000. Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae. Ann. Rev. Biochem. 69: 571–595

    Article  CAS  Google Scholar 

  51. Jacobs Anderson J.S., and Parker, R. 1998. The 3’ to 5’ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SK12 DEVH box protein and 3’ to 5’ exonuclease of the exosome complex. EMBO. J. 17: 1497–1506.

    Google Scholar 

  52. Ross, J. 1995. mRNA stability in mammalian cells. Microbiol. Rev. 59: 423–450.

    Google Scholar 

  53. Shyu, A-B., Belasco, J., and Greenberg, M. 1991. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 5: 221–231.

    Article  PubMed  CAS  Google Scholar 

  54. Jacobson, A., and Peltz, S.W. 1996. Interrelationships between the pathways of mRNA decay and translation in eukaryotic cells. Annu. Rev. Biochem. 65: 693–740.

    Article  PubMed  CAS  Google Scholar 

  55. Chen, C., and Shyu, A-B. 1995. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20: 465–470.

    Article  PubMed  CAS  Google Scholar 

  56. Kiledjian, M., DeMaria, C., Brewer, G., and Novick, K. 1997. Identification of AUF1 (heterogenous nuclear ribonucleoprotein D) as a component of the a-globin mRNA stability complex. Mol. Cell. Biol. 17: 4870–4876.

    PubMed  CAS  Google Scholar 

  57. Zhang, W., Wagner, B.J., Ehrenman, K., Schaefer, A.W., DeMaria, C.T., Crater, D., DeHaven, K., Long, L., and Brewer, G. 1993. Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol. Cell Biol. 13: 7652–7665.

    PubMed  CAS  Google Scholar 

  58. Hamilton, B.J., Nagy, E., Malter, J.S., Arrick, B.A., and Rigby, W.F. 1993. Association of heterogenous nuclear ribonucleoprotein Al and C proteins with reiterated AUUUA sequences. J. Biol. Chem. 268: 8881–8887.

    PubMed  CAS  Google Scholar 

  59. Levine, T.D., Gao F.-B., King, P.H., Andrews, L.G., and Keene, J.D. 1993. Hel-N1: an autoimmune RNA-binding protein with specificity for 3’ uridylate-rich untranslated regions of growth factor mRNAs. Mol. Cell. Biol. 13: 3494–3504.

    PubMed  CAS  Google Scholar 

  60. Peng, S.S.-Y., Chen,C.-Y.A., Xu, N., and Shyu, A.-B. 1998. RNA stabilization of the AU-rich element binding protein, HuR, an ELAV protein. EMBO. J. 17: 3461–3470.

    CAS  Google Scholar 

  61. Ford, L.P., Watson, J., Keene, J.D., and Wilusz, J. 1999. ELAV proteins stabilize deadenylated intermediates in a novel in vitro mRNA deadenylation/degradation system. Genes Dev. 13: 188–201.

    Article  PubMed  CAS  Google Scholar 

  62. Beckel-Mitchener, A., Keller, R., Miera, A., Mobarak, C.D., Kohn, D.T., Furneaux, H., and Perrone-Bizzozero, N.I. 2000 Poly(A) tail-dependent stabilization of GAP-43 mRNA by HuD. RNA Society meeting (Abstr.).

    Google Scholar 

  63. Gao, M., Fritz, D., Ford, L., and Willusz, J. 2000. Interaction between a poly(A)-specific ribonuclease and the 5’ cap influences mRNA deadenylation in vitro. Mol. Cell 5: 479488

    Google Scholar 

  64. Bernstein, P., Peitz, S.W., and Ross, J. 1989. The poly(A)-poly(A) binding protein complex is a major determinant of mRNA stability. Mol. Cell. Biol. 9: 659–670.

    PubMed  CAS  Google Scholar 

  65. Dehlin, E., Wormington, M., Körner, C., and Wahle, E. 2000. Cap-dependent deadenylation of mRNA. EMBO J. 19: 1079–1086.

    CAS  Google Scholar 

  66. Tamil, S.Z., Wells, S.E., Deardorff, J.A., and Sachs, A.B. 1997. Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. Proc. Natl Acad. Sci. USA. 94: 9046–9051.

    Article  Google Scholar 

  67. Morino, S, Imataka, H, Svitkin, YV, Pestova, TV, and Sonenberg, N 2000. Eukaryotic translation initiation factor 4E (eIF4E) binding site and the middle one-third of eIF4GI constitute the core domain for cap-dependent translation, and the C-terminal one-third functions as a modulatory region. Mol. Cell. Biol. 20: 468–477.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Perrone-Bizzozero, N., Keller, R. (2002). Post-Transcriptional Control of the GAP-43 mRNA by the ELAV-Like Protein HuD. In: Sandberg, K., Mulroney, S.E. (eds) RNA Binding Proteins. Endocrine Updates, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6446-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6446-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4935-6

  • Online ISBN: 978-1-4757-6446-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics