Skip to main content

Photoluminescence of Inorganic Semiconductors for Chemical Sensor Applications

  • Chapter
Optoelectronic Properties of Inorganic Compounds

Part of the book series: Modern Inorganic Chemistry ((MICE))

Abstract

Over the last few decades there has been a remarkable growth in applications of chemical sensors. This growth stems from the increased need for sensitive and selective sensors in many technological aspects of life such as robotics, automation, enviromental science, information technology, and medicine.1 Semiconductor-based sensors and photoluminescent sensors have attracted much attention in this regard.2,3 The known electronic properties of semiconductor materials and the contactless nature of photoluminescence (PL) spectroscopy make inorganic semiconductors an attractive approach for chemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Jinata, M. Josowicz, and D. De Vaney, Anal. Chem 66 207R (1994) and references cited therein

    Google Scholar 

  2. J. Jinata, Anal. Chem. 64, 196R (1992)

    Article  Google Scholar 

  3. S. Middelhoek, A. Bellekom, U. Dauderstadt, P. French, S. Hout, W. Kinat, E. Riedijk, and M. Vellekoop, Meas. Sci. Technol. 6, 1641 (1995)

    Article  ADS  Google Scholar 

  4. M. Collison and M. Meyerhoff, Anal. Chem. 62, 425A (1990).

    Google Scholar 

  5. J. Turner, ed., Proceedings of the Symposium on Chemical Sensors, pp. 87–89, The Electrochemical Society, New Jersey (1987)

    Google Scholar 

  6. G. A. Junter, Electrochemical Detection Techniques in the Applied Sciences, Ellis Horwood, Chichester, New York (1988).

    Google Scholar 

  7. J. R. Lakowicz, ed., Advances in Fluorescence Sensing Technology II,Proc. SPIE 2388 (1995) and references cited therein;

    Google Scholar 

  8. J. R. Lakowicz, Topics in Fluorescence Spectroscopy, Volume 4: Probe Design and Chemical Sensing, Plenum Press, New York (1994);

    Google Scholar 

  9. O. S. Wolfbeis, ed., Fiber Optic Chemical Sensors and Biosensors, CRC Press, Boca Raton (1991);

    Google Scholar 

  10. A. W. Czarnick, ed., Fluorescent Chemosensors for Ion and Molecule Recognition, American Chemical Society, Washington, DC (1993).

    Google Scholar 

  11. a) P. A. Cox, The Electronic Structure and Chemistry of Solids, Oxford University Press, New York (1987);

    Google Scholar 

  12. C. Keitel, Introduction to Solid State Physics,5th edn., Chapter 2, Wiley, New York;

    Google Scholar 

  13. S. L. Altmann, Band Theory of Metals, Pergamon Press, New York (1970);

    Google Scholar 

  14. G. Burns, Solid State Physics, Academic Press, New York (1985).

    Google Scholar 

  15. S. M. Sze, Physics of Semiconductors Devices, Wiley, New York (1981).

    Google Scholar 

  16. A. J. Bard, A. B. Bocarsly, E- E E. Fan, E. G. Walton, and M. S. Wrighton, J. Am. Chem. Soc. 102, 3671 (1980).

    Article  Google Scholar 

  17. J. I. Pankove, Optical Processes in Semiconductors, Dover, New York (1971).

    Google Scholar 

  18. D. W. Bahnemann, C. Kormann, and M. R. Hoffinan, J. Phys. Chem. 91, 3789 (1987).

    Article  Google Scholar 

  19. A. B. Ellis, in Chemistry and Structure at Interfaces: New Laser and Optical Techniques, R. B. Hall ed., Chapter 6, Deerfield Beach, Florida (1986).

    Google Scholar 

  20. K. Mettler, Appl. Phys. 12, 75 (1977).

    Article  ADS  Google Scholar 

  21. R. Kohlrausch, Annalen 5, 430 (1847).

    Google Scholar 

  22. G. Williams and D. C. Watts, Trans. Faraday Soc. 66, 80 (1971).

    Article  Google Scholar 

  23. R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, Phys. Rev. Lett. 53, 958 (1984).

    Article  ADS  Google Scholar 

  24. H. Scher, M. F. Shlesinger, and J. T. Bendier, Physics Today 44, 26 (1991).

    Article  ADS  Google Scholar 

  25. M. E Shlesinger and E. W. Montroll, Proc. Natl. Acad. Sci. U.S.A. 81, 1280 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  26. D. R. James, Y. Liu, P. De Mayo, and W. R. Ware, Chem. Phys. Lett. 120, 460 (1985);

    Google Scholar 

  27. W. R. Ware, Photochemistry in Organized and Constrained Media, Chapter 13, VCH Publ., New York (1991).

    Google Scholar 

  28. A. K. Livesey and J. C. Brochon, Biophys. J. 52, 693 (1987).

    Article  Google Scholar 

  29. J. Vaitkus, J. Phys. Stat. Sol. 34, 769 (1976).

    Article  ADS  Google Scholar 

  30. Y. Rosenwaks, L. Bumstein, Y. Shapira, and D. Huppert, J. Phys. Chem. 94, 6842 (1990);

    Google Scholar 

  31. D. Benjamin, and D. Huppert, J. Phys. Chem. 92, 4678 (1988).

    Article  Google Scholar 

  32. Y. Rosenwaks, B. R. Thacker, R. K. Ahrenkiel, and A. J. Nozik, J. Phys. Chem. 96, 1096 (1992).

    Article  Google Scholar 

  33. A. Henglein, Topics in Current Chemistry 143, 115 (1988);

    Google Scholar 

  34. D. W. Bahnermann, Israel J. Chem. 33, 115 (1993);

    Google Scholar 

  35. Y. Wang and N. Herron, J. Phys. Chem. 95, 525 (1991).

    Article  Google Scholar 

  36. G. Mie, Ann. Phys. 3, 377 (1908).

    Article  Google Scholar 

  37. H. Frolich, Physica 6, 406 (1937).

    Article  ADS  Google Scholar 

  38. L. E. Brus, J Chem. Phys. 80, 4403 (1984).

    Article  ADS  Google Scholar 

  39. M. Haase, H. Weller, and A. Henglein, J. Phys. Chem. 92, 482 (1988);

    Google Scholar 

  40. Y. Nosaka, J Phys. Chem. 95, 5054 (1991).

    Article  Google Scholar 

  41. N. Chestnoy, T. D. Harris, H. R. Hull, and L. E. Brus, J. Phys. Chem. 90, 3393 (1986).

    Article  Google Scholar 

  42. N. J. Albery and P. N. Bartlett, J Electrochem. Soc. 131, 315 (1984).

    Article  ADS  Google Scholar 

  43. E Cao, G. Oskam, P. C. Searson, J. M. Stipkala, T. A. Heimer, E Farzad, and G. J. Meyer, J. Phys. Chem. 99, 11974 (1995).

    Article  Google Scholar 

  44. A. Goosens, J. Electrochem. Soc. 143, L131 (1996).

    Article  Google Scholar 

  45. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Chapter 9, Plenum Press, New York (1983).

    Google Scholar 

  46. W H. Brattain and J. Bardeen, J. Bell Syst. Tech. J. 32, I (1953).

    Google Scholar 

  47. G. Oster and M. Yamamoto, J. Appl. Phys. 37, 823 (1966).

    Article  ADS  Google Scholar 

  48. R. Z. Nink, Naturforsch 24a, 1329 (1969).

    Google Scholar 

  49. W. B. Pennebaker and J. E O’Hanlon, J. Appl. Phys. 45, 1315 (1974).

    Article  Google Scholar 

  50. M. Anpo and Y. Kubokawa, J Phys. Chem. 88, 5556 (1984).

    Article  Google Scholar 

  51. M. C. Ko and G. J. Meyer, in preparation.

    Google Scholar 

  52. M. Haase, H. Weller, and A. Henglein, J. Phys. Chem. 92, 482 (1988).

    Article  Google Scholar 

  53. J. Rabani and D. Behar, J. Phys. Chem. 93, 2559 (1989).

    Article  Google Scholar 

  54. U. Koch, A. Fojtik, H. Weller, and A. Henglein, Chem. Phys. Lett. 122, 507 (1985).

    Article  ADS  Google Scholar 

  55. T. Wolkenstein, G. P. Peka, and V. V. Malakhov, J. Lumin. 5, 261 (1972).

    Article  Google Scholar 

  56. E N. Castellano, J. M. Stipkala, L. A. Friedman, and G. J. Meyer, Chem. Mat. 6 2123 (1994) and references cited therein.

    Google Scholar 

  57. M. Anpo, T. Shima, and Y. Kubokawa, Chem. Lett 12, 1799 (1985);

    Google Scholar 

  58. M. Anpo, N. Aikawa, Y. Kubokawa, M. Che, C. Louis, and E. Giamello, J Phys. Chem. 89, 5017 (1985).

    Article  Google Scholar 

  59. T. Suzuki and M. Ogawa, Appl. Phys. Lett. 34, 447 (1979).

    Article  ADS  Google Scholar 

  60. H. Nagai and Y. Naguchi, Appl. Phys. Lett. 33, 312 (1978);

    Google Scholar 

  61. H. Nagai, S. Tohno, and Y. Mizushima, J. Appl. Phys. 50, 5546 (1979).

    Google Scholar 

  62. S. D. Lester, T. S. Kim, and B. G. Streetman, J. Electrochem. Soc. 133, 2208 (1986);

    Google Scholar 

  63. S. D. Lester, T. S. Kim, and B. G. Streetman, J. Appl. Phys. 60, 4209 (1986).

    Article  Google Scholar 

  64. C. W. Wilmsen, P. D. Kirchner, and J. M. Woodall, J. Appl. Phys. 64, 3287 (1988).

    Article  ADS  Google Scholar 

  65. G. J. Meyer, Doctoral Dissertation, University of Wisconsin, Madison (1989).

    Google Scholar 

  66. H. Hasegawa, T. Saitoh, S. Konishi, H. Ishii, and H. Ohno, Jpn. J. Appl. Phys. 27, L2177 (1988).

    Article  ADS  Google Scholar 

  67. C. J. Sandroff, R. N. Nottenburg, J. C. Bischoff, and R. Bhat, Appl. Phys. Lett. 51, 33 (1987);

    Google Scholar 

  68. B. J. Skromme, C. J. Sandroff, E. Yablonovitch, and T. Gmitter, Appl. Phys. Lett. 51, 2022 (1987);

    Article  ADS  Google Scholar 

  69. L. A. Farrow, C. J. Sandroff, M. C. Tamargo, Appl. Phys. Lett. 51, 1931 (1987);

    Article  ADS  Google Scholar 

  70. E. Yablonovitch, C. J. Sanddroff, R. Bhat, and T. Gmitter, Appl. Phys. Lett. 51, 439 (1987);

    Article  ADS  Google Scholar 

  71. R. N. Nottenburg, C. J. Sandroff, D. A. Humphrey, T. H. Hollenbeck, R. Bhat, Appl. Phys. Lett. 52, 218 (1988);

    Article  ADS  Google Scholar 

  72. C. J. Sandroff, M. S. Hegde, L. A. Farrow, C. C. Chang, and J. P. Harbison, Appl. Phys. Lett. 54, 362 (1989).

    Article  ADS  Google Scholar 

  73. S. R. Lunt, G. N. Ryba, P. G. Santangelo, and N. S. Lewis, J. Appl. Phys. 70, 7449 (1991);

    Google Scholar 

  74. G. N. Ryba, C. N. Kenyon, and N. S. Lewis, J. Phys. Chem. 97, 13814 (1993).

    Article  Google Scholar 

  75. R. S. Besser and C. R. Helms, Appl. Phys. Lett. 52, 1707 (1988);

    Google Scholar 

  76. C. J. Spindt, R. S. Besser, R. Cao, K. Miyano, C. R. Helms, and W. E. Spicer, Appl. Phys. Lett. 54, 1148 (1989);

    Article  ADS  Google Scholar 

  77. R. S. Besser and C. R. Helms, J. Appl. Phys. 65, 4306 (1989).

    Article  ADS  Google Scholar 

  78. W. G. Becker and A. J. Bard, J Phys. Chem 87, 4888 (1983).

    Article  Google Scholar 

  79. S. H. Liebson, J. Electrochem. Soc. 101, 359 (1954);

    Google Scholar 

  80. (b) S. H. Liebson and E. J. West, J. Chem. Phys. 23, 977 (1955)

    Google Scholar 

  81. S. H. Liebson, J. Chem. Phys. 23, 1732 (1955);

    ADS  Google Scholar 

  82. S. H. Liebson, J. Electrochem. Soc. 102, 529 (1955).

    Google Scholar 

  83. D. W Nyberg and K. Colbow, Can. J. Phys. 45, 2833 (1967).

    Article  ADS  Google Scholar 

  84. G. Heine and K. Wandel, Phys. Stat. Sol. 19, 415 (1973).

    Article  ADS  Google Scholar 

  85. C. E. Bleil, W. A. Albers, Surf. Sci. 2, 307 (1964).

    Article  ADS  Google Scholar 

  86. B. V. Novikov and A. E. Cherednichenko, Phys. Lett 32A, 205 (1970);

    Google Scholar 

  87. A. E. Cherednichenko, B. V. Novikov, and G. V. Benemanskaya, J. Lumin. 6, 193 (1973).

    Article  ADS  Google Scholar 

  88. T. Wolkenstein, G. P. Peka, and V. V. Malakhov, J. Lumin 5, 252 (1972);

    Google Scholar 

  89. T. Wolkenstein, G. P. Peka, and V. V Malakhov, Kin. i Kat. 14, 1052 (1973).

    Google Scholar 

  90. M. Hiramoto, K. Hashimoto, and T. Sakata, Chem. Phys. Lett. 182, 139 (1991).

    Article  ADS  Google Scholar 

  91. G. J. Meyer, G. C. Lisensky and A. B. Ellis, J Am. Chem. Soc. 110, 4914 (1988);

    Google Scholar 

  92. L. K. Leung, G. J. Meyer, G. C. Lisensky, and A. B. Ellis, J. Phys. Chem. 94, 1214 (1990).

    Article  Google Scholar 

  93. G. J. Meyer, L. K. Leung, J. Yu, G. C. Lisensky and A. B. Ellis, J. Am. Chem. Soc. 111, 5146 (1989);

    Google Scholar 

  94. E. J. Winder, D. E. Moore, D. R. Neu, A. B. Ellis, J. E Geisz, and T. F. Kuech, J. Cryst. Growth 148, 63 (1995).

    Article  ADS  Google Scholar 

  95. D. R. Neu, J. A. Olson, and A. B. Ellis, J Phys. Chem. 97, 5713 (1993).

    Article  Google Scholar 

  96. G. C. Lisensky, G. J. Meyer, and A. B. Ellis, Anal. Chem. 60, 2531 (1988).

    Article  Google Scholar 

  97. C. J. Murphy and A. B. Ellis, J Phys. Chem. 94, 3082 (1990);

    Google Scholar 

  98. J. Z. Zhang, M. J. Geselbracht, and A. B. Ellis, J. Am. Chem. Soc., 115, 7789 (1993);

    Article  Google Scholar 

  99. K. D. Kepler, G. C. Lisensky, M. Patel, L. A. Sigworth, and A. B. Ellis, J. Phys. Chem. 99, 16011 (1995);

    Article  Google Scholar 

  100. J. Z. Zhang and A. B. Ellis, J Phys. Chem. 96, 2700 (1992).

    Article  Google Scholar 

  101. C. J. Murphy and A. B. Ellis, Polyhedron 9, 1913 (1900);

    Google Scholar 

  102. C. J. Murphy, G. C. Lisensky, L. K. Leung, G. R. Kowach, and A. B. Ellis, J. Am. Chem. Soc. 112, 8344 (1990);

    Article  Google Scholar 

  103. G. C. Lisensky, R. L. Penn, C. J. Murphy, and A. B. Ellis, Science, 248, 840 (1990).

    Article  ADS  Google Scholar 

  104. R. Rossetti and L. E. Brus, J. Phys. Chem. 86, 4470 (1982).

    Article  Google Scholar 

  105. A. Henglein, J Phys. Chem. 86, 2291 (1982);

    Google Scholar 

  106. R. Rossetti, S. M. Beck, and L. E. Brus, J. Am. Chem. Soc. 106, 980 (1984).

    Google Scholar 

  107. T. Dannhauser, M. O’Neil, K. Johannson, D. Whitten, and G. J. McLendon, Phys. Chem. 90, 6074 (1986);

    Google Scholar 

  108. M. O’Neil, J. Marohn, and G. McLendon, J. Phys. Chem. 94, 4356 (1990).

    Article  Google Scholar 

  109. U. Resch, A. Eychmuller, M. Haase, and H. Weller, Langmuir 8, 2215 (1992).

    Article  Google Scholar 

  110. L. T. Canham, J Phys. Chem. Solids 47, 363 (1986).

    Google Scholar 

  111. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).

    Google Scholar 

  112. D. C. Benshalet et al. eds., Optical Properties of Low Dimensional Silicon Structures, Kluwer Academic, Dordrecht (1993); (b) L. J. Brus, J. Phys. Chem. 98, 3575 (1994).

    Google Scholar 

  113. J. Chun, A. B. Bocarsly, T. R. Cottrell, J. B. Benziger, and J. C. Lee, J. Am. Chem. Soc. 115, 3024 (1993).

    Google Scholar 

  114. J. L. Coffer, S. C. Lilley, R. A. Martin, and L. A. Files-Sesler, J. Appl. Phys. 74, 2094 (1993);

    Google Scholar 

  115. J. L. Coffer, J. Luminescence 70, 343 (1996);

    Google Scholar 

  116. B. Sweryda-Krawiec and J. L. Coffer, J. Electrochem. Soc. 142, L93 (1995);

    Article  Google Scholar 

  117. R. Chandler-Henderson, B. Sweryda-Krawiec, and J. L. Coffer, J. Phys. Chem. 99, 8851 (1995).

    Article  Google Scholar 

  118. J. M. Lauerhaas, G. M. Credo, J. L. Heinrich, and M. J. Sailor, J Am. Chem. Soc. 114, 1911 (1992);

    Google Scholar 

  119. J. M. Lauerhaaas and M. J. Sailor, Science, 261, 1567 (1993).

    Article  ADS  Google Scholar 

  120. J. M. Rehm, G. L. McLendon, L. Tsybeskov, and P. M. Fauchet, Appl. Phys. Lett. 66, 3669 (1995).

    Article  ADS  Google Scholar 

  121. M. C. Ko and G. J. Meyer, Chem. Mat. 7, 12 (1995);

    Google Scholar 

  122. M. C. Ko and G. J. Meyer, Chem. Mat. 8, 2686 (1996).

    Article  Google Scholar 

  123. D. L. Fisher, J. Harper, and M. J. Sailor, J. Am. Chem. Soc. 117, 7846 (1995).

    Article  Google Scholar 

  124. J. Rehm, G. McLendon, and P. Fauchet, J. Am. Chem. Soc. 118, 4490 (1996).

    Article  Google Scholar 

  125. D. Andsager, J. Hilliard, J. M. Hetrick, L. H. AbuHassan, M. Plisch, and M. H. Nayfeh, J. Appl. Phys. 74, 4783 (1993);

    Google Scholar 

  126. J. E. Hilliard, H. M. Nayfeh, and M. H. Nayfeh J Appl. Phys. 77, 4130 (1995).

    Article  ADS  Google Scholar 

  127. M. K. Carpenter, H. V. Ryswyk and A. B. Ellis, Langmuir 1, 605 (1985).

    Article  Google Scholar 

  128. L. K. Leung, N. J. Komplin, A. B. Ellis, and N. Tabatabaie, J. Phys. Chem. 95, 5918 (1991).

    Article  Google Scholar 

  129. H. Van Ryswyk and A. B. Ellis, J Am. Chem. Soc. 108, 2454 (1986).

    Article  Google Scholar 

  130. D. Moore, G. Lisensky and A. B. Ellis, J. Am. Chem. Soc. 116, 9487 (1994).

    Article  Google Scholar 

  131. R. R. Chandler and J. L. Coffer, J Phys. Chem. 97, 8767 (1993).

    Article  Google Scholar 

  132. A. W. Adanson, Physical Chemistry of Surfaces, 5th edn„ Wiley, Chichester (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ko, M.C., Meyer, G.J. (1999). Photoluminescence of Inorganic Semiconductors for Chemical Sensor Applications. In: Roundhill, D.M., Fackler, J.P. (eds) Optoelectronic Properties of Inorganic Compounds. Modern Inorganic Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6101-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6101-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3273-0

  • Online ISBN: 978-1-4757-6101-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics