Skip to main content

Part of the book series: Modern Inorganic Chemistry ((MICE))

Abstract

The investigation of the properties of substances under high pressures has emerged as a major multidisciplinary research endeavor embracing a diverse arsenal of spectroscopic, physical, and chemical probes. High pressure NMR, ESR, IR, Raman, Brillouin, electronic absorption, electronic emission, X-ray, and Mössbauer spectroscopic experiments are now commonplace.1 The vigorous state of high pressure research is attested to by a number of excellent books2–5 and review articles,1,6–8 to which the reader is referred to gain insight into the historical origins and current breadth of high pressure studies. Holzapfel’s review provides a thorough, up-to-date compendium of high pressure references.8 The exhaustive compilation of earlier high pressure literature (1900–1968) by Merrill also should be noted.9 Many have contributed to the development of high pressure science. However, particular mention should be made of the pioneering high pressure work of Bridgman,10,11 rightly called the father of high pressure science, and the thorough and richly diverse high pressure spectroscopic studies of Drickamer.12–15

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. A. Jayaraman, Rev. Mod. Phys. 55, 65 (1983).

    Article  ADS  Google Scholar 

  2. R. S. Bradley, ed., High Pressure Physics and Chemistry, Vols. 1 and 2, Academic Press, New York (1963).

    Google Scholar 

  3. N. S. Isaacs and W. B. Holzapfel, eds. High Pressure Techniques in Chemistry and Physics: A Practical Approach, Oxford University Press, Oxford (1995)

    Google Scholar 

  4. R. Pucci and T. G. Piccitto, eds., Molecular Solids Under Pressure, North-Holland, Amsterdam (1991).

    Google Scholar 

  5. H. G. Drickamer and C. W. Frank, eds., Electronic Transitions and the High Pressure Chemistry and Physics of Solids, Chapman and Hall, London (1973).

    Google Scholar 

  6. S. Ramaseshan, G. Parthasarathy, and E. S. R. Gopal, Pramana 28, 435 (1987).

    Article  ADS  Google Scholar 

  7. R. J. Hemley, P. M. Bell, and H. K. Mao, Science 237, 605 (1987).

    Article  ADS  Google Scholar 

  8. W. B. Holzapfel, Rep. Prog. Phys. 59, 29 (1996).

    Article  ADS  Google Scholar 

  9. L. Merrill, High Pressure Bibliography 1900–1968, Vols. 1 and 2, High Pressure Data Center, BYU, Provo, UT (1970).

    Google Scholar 

  10. P. W. Bridgman, Physics of High Pressure, Dover, New York (1970)

    Google Scholar 

  11. E W. Bridgman, Collected Experimental Papers, Harvard University, Cambridge, MA (1964).

    Google Scholar 

  12. H. G. Drickamer, Acc. Chem. Res. 19, 329 (1986).

    Article  Google Scholar 

  13. H. G. Drickamer, Physica A 156, 179 (1989).

    Article  ADS  Google Scholar 

  14. H. G. Drickamer, in High Pressure Science and Technology, B. Voder and P. Marteau, eds., pp. 814, Pergamon Press, New York (1980).

    Google Scholar 

  15. H. G. Drickamer, Ann. Rev. Phys. Chem. 33, 35 (1982).

    Google Scholar 

  16. Confusion and inconsistency abound in the chemical and spectroscopic literature concering the use of the words luminescence, emission, fluorescence and phosphorescence. In this article, the words luminescence and emission are taken to be synonyms. Each of these two terms will be used interchangeably to describe the general process wherein a system undergoes a transition from a higher energy excited state to a lower energy state with the emission of one or more photons. The words fluorescence and phosphorescence are more specific terms used in this article to denote luminescence or emission of a particular type. A fluorescence emission is defined to be a luminescence in which the upper and lower states both exhibit the same electronic spin multiplicity (e.g. afluorescence in a d3 transition metal complex). Similarly, a phosphorescence emission is defined to be a luminescence in which there is a change of electronic spin multiplicity in going from the upper state to the lower state (e.g., a E- 2E5 phosphorescence in a d3 transition metal complex). When electronic spin multiplicities are unknown, not a point of interest for the problem at hand, or difficult or impossible to specify (e.g., as a consequence of a strong-spin orbit coupling perturbation), the generic terms emission or luminescence will be used.

    Google Scholar 

  17. R. D. Ballard, The Discovery of the Titanic, Warner, New York (1987).

    Google Scholar 

  18. R. D. Ballard, Exploring the Titanic, Scholastic, New York (1988).

    Google Scholar 

  19. L. W. Finger, Nucl. Instr. Meth. Phys. Res. B 97, 55 (1995).

    Article  ADS  Google Scholar 

  20. R. Jeanloz, Ann. Rev. Phys. Chem. 40, 237 (1989).

    Article  ADS  Google Scholar 

  21. R. Jeanloz, Ann. Rev. Earth Planet. Sci. 18, 357 (1990).

    Article  ADS  Google Scholar 

  22. D. Morrison and S. C. Wolff, Frontiers of Astronomy, 2nd ed., p. 132, Saunders, New York (1994).

    Google Scholar 

  23. Ref. 22, pp 332–336.

    Google Scholar 

  24. R. Rhodes, The Making of the Atomic Bomb, Simon and Schuster, New York (1986).

    Google Scholar 

  25. Physics Today 49 26 (1996).

    Google Scholar 

  26. A. L. Ruoff, in High Pressure Research Applications in Geophysics, M. H. Manghhani and S. Akimoto, eds., pp. 13–33, Academic Press, New York (1997).

    Google Scholar 

  27. Shock Compression of Condensed Matter-1989,“ S. C. Schmidt, J. N. Jonson, and L. W. Davidson, eds., North-Holland, Amsterdam (1990).

    Google Scholar 

  28. S. Weir, A. Mitchell, and B. Nellis, Phys. Rev. Lett. 76 (11), 1996.

    Google Scholar 

  29. R. M. Hazen, The New Alchemists, Times Books, New York (1993).

    Google Scholar 

  30. A. Jayaraman, Scientific American 250, 54 (1984).

    Article  ADS  Google Scholar 

  31. M. Seal, High Temp. High Press 16, 573 (1984).

    Google Scholar 

  32. L. Merrill and W. A. Bassett, Rev. Sci. Instrum. 45, 290 (1974).

    Article  ADS  Google Scholar 

  33. G. J. Piermarini, S. Block, J. D. Barnett, and R. A. Forman, J. Appl. Phys. 46, 2774 (1975).

    Google Scholar 

  34. W. E. Sherman and A. A. Stadtmuller, Experimental Techniques in High Pressure Research, pp. 319–320, Wiley, New York (1987).

    Google Scholar 

  35. A. L. Schawlow, A. H. Piksis, and S. Sugano, Phys. Rev. 122, 1469 (1961).

    Article  ADS  Google Scholar 

  36. G. Jones and D. Dunstan, J. Rev. Sci. Instrum. 67, 489 (1996).

    Article  ADS  Google Scholar 

  37. S. M. Sharma and Y. M. Gupta, Phys. Rev. B. 43, 879 (1991).

    Article  ADS  Google Scholar 

  38. H. Hough, J. Demas, T. O. Williams, and H. N. G. Wadley, Acta Metall. Mater. 43, 821 (1995).

    Article  Google Scholar 

  39. W. Y. Jia, H. M. Liu, Y. Y. Wang, U. Hommerich, H. Eilers, K. Hof man, and W. M. Yen, J. Luminescence 59, 279 (1994).

    Article  ADS  Google Scholar 

  40. W. Y. Jia, H. M., Liu, Y. Y. Wang, U. Hommerich, H. Eilers, K. R. Hoffman, and W. M. Yen, J. Luminescence 60, 158 (1994).

    Article  ADS  Google Scholar 

  41. M. Holtz, T. R. Park, J. Amarasekera, S. A. Solin, and T. J. Pinnavaia, J. Chem. Phys. 100, 3346 (1994).

    Article  ADS  Google Scholar 

  42. U. Hommerich, H. Eilers, W. M. Yen, W. Jia, and Y. Wang, Optics Commun. 106, 218 (1994).

    Article  ADS  Google Scholar 

  43. H. G. Drickamer and K. L. Bray, Acc. Chem. Res. 23, 55 (1990).

    Article  Google Scholar 

  44. H. G. Drickamer, Solid State Phys. 17, 1 (1965).

    Article  Google Scholar 

  45. The volume change is expressed as a positive absolute value in this expression for the pressure-volume work term. This differs from the pressure-volume work expression w = -pA V where AV is negative for compressions and positive for expansions.

    Google Scholar 

  46. P. D. Johnson and E E. Williams, Phys. Rev. 95, 69 (1954).

    Article  ADS  Google Scholar 

  47. S. H. Lin, J. Chem. Phys. 59, 3358 (1973).

    ADS  Google Scholar 

  48. S. E. Agnew and B. I. Swanson, J Phys. Chem. 94, 995 (1990).

    Article  Google Scholar 

  49. D. Curie, D. E. Berry, and E Williams, Phys. Rev. B. 20, 2323 (1979).

    Article  ADS  Google Scholar 

  50. J. S. Olsen, C. S. G. Cousins, L. Gerward, H. Jhans, and B. J. Sheldon, Phys. Scr. 43, 327 (1991).

    Article  ADS  Google Scholar 

  51. F. Ogata, T. Kambara, N. Sasaki, and K. I. Gondaira, J. Phys. C., Solid State Phys. 16, 1391 (1983).

    Article  ADS  Google Scholar 

  52. C. P. Slichter and H. G. Drickamer, J. Chem. Phys. 56, 2142 (1972).

    Article  ADS  Google Scholar 

  53. J. K. Burdett, Adv. Inorg. Chem. Radiochem. 21, 113 (1978).

    Article  Google Scholar 

  54. J. W. Kenney, III, J. W. Clymire, and S. F. Agnew, J. Am. Chem. Soc. 117, 1645 (1995).

    Article  Google Scholar 

  55. A. G. Rinzler, J. E Dolan, L. A. Kappers, D. S. Hamilton, and R. H. Bartram, J. Chem. Phys. Solids 54, 89 (1993).

    Article  ADS  Google Scholar 

  56. R. H. Bartram, J. E Dolan, J. C. Charpire, A. G. Rinzler, and L. A. Kappers, Cryst. Latt. Def. Amorph. Mat. 15, 165 (1987).

    Google Scholar 

  57. J. E Dolan, L. A. Kappers, and R. H. Bartram, Phys. Rev. B 33, 7339 (1986).

    Article  ADS  Google Scholar 

  58. J. N. Demas and G. A. Crosby, J. Am. Chem. Soc. 92, 7262 (1970).

    Article  Google Scholar 

  59. S. Ohnishi, and S. Sugano, Jap. J Appl. Phys. 21, L309 (1982).

    Article  ADS  Google Scholar 

  60. J. H. Eggert, K. A. Goettel, and I. F. Silvera, Phys. Rev. B. 40, 5724 (1989).

    Article  ADS  Google Scholar 

  61. J. H. Eggert, K. A. Goettel, and I. E Silvers, Phys. Rev. B. 40, 5733 (1989).

    Article  ADS  Google Scholar 

  62. J. H. Eggert, E Moshary, W. J. Evans, K. A. Goettel, and 1. E Silvers, Phys. Rev. B. 44, 7202 (1991).

    Article  ADS  Google Scholar 

  63. M. Du, Phys. Lett. A 163, 326 (1992).

    Article  ADS  Google Scholar 

  64. M. Grinberg and T. Orlinkowski, J. Luminescence 53, 447 (1992).

    Article  ADS  Google Scholar 

  65. W. L. Vos and J. A. Schouten, J. Appl. Phys. 69, 6744 (1991).

    Google Scholar 

  66. S. J. Duclos, Y. K. Vohra, and A. L. Ruoff, Phys. Rev. B. 41, 5372 (1990).

    Article  ADS  Google Scholar 

  67. Y. Sato-Sorensen, J. Appl. Phys. 60, 2985 (1986).

    Article  ADS  Google Scholar 

  68. S. Decurtins and H. Gödel, Inorg. Chem. 21, 3598 (1982).

    Article  Google Scholar 

  69. S. Decurtins, H. U. Gödel, and A. Pfeuti, Inorg. Chem. 21, 1101 (1982).

    Article  Google Scholar 

  70. K. J. Schenk and H. U. Gödel, Inorg. Chem. 21, 2253 (1982).

    Article  Google Scholar 

  71. R. P. Scaringe, P. Singh, R. P. Eckberg, W. E. Hatfield, and D. J. Hodgson, Inorg. Chem. 14, 1127 (1975).

    Article  Google Scholar 

  72. H. R. Fischer, J. Glerup, D. J. Hodgson, and E. Pedersen, Inorg. Chem. 21, 3063 (1982).

    Article  Google Scholar 

  73. H. R. Fisher and D. J. Hodgson, Inorg. Chem. 23, 4755 (1984).

    Article  Google Scholar 

  74. J. W. Kenney, III in preparation.

    Google Scholar 

  75. D. M. Roundhill, H. B. Gray, and C. Che, Acc. Chem. Res. 22, 55 (1989).

    Article  Google Scholar 

  76. W. A. Fordyce, J. G. Brummer, and G. A. Crosby, J. Am. Chem. Soc. 103, 7061 (1981).

    Article  Google Scholar 

  77. S. E Rice and H. B. Gray, J. Am. Chem. Soc. 105, 4571 (1983).

    Article  Google Scholar 

  78. J. G. Brummer and G. A. Crosby, Chem. Phys. Lett. 112, 15 (1984).

    Article  ADS  Google Scholar 

  79. W. L. Parker and G. A. Crosby, Chem. Phys. Lett. 105, 544 (1984).

    Article  ADS  Google Scholar 

  80. C. Che, L. G. Butler, H. B. Gray, R. M. Crooks, and W. H. Woodruff, J. Am. Chem. Soc. 105, 5492 (1993).

    Article  Google Scholar 

  81. D. J. Theil, P. Livins, E. A. Stern, and A. Lewis, Nature 362, 40 (1993).

    Article  ADS  Google Scholar 

  82. H. B. Kim, T. Hiraga, T. Uchida, N. Kitamura, and S. Tazuke, Coord. Chem. Rev. 97, 81 (1990).

    Article  Google Scholar 

  83. L. Bär, H. Englmeier, G. Gliemann, U. Klement, and K.-J. Range, Inorg. Chem. 29, 1162 (1990).

    Article  Google Scholar 

  84. M. Fetterholf, A. E. Friedman, Y. Y. Yang, H. Offen, and P. C. Ford, J. Phys. Chem. 92, 3670 (1988).

    Google Scholar 

  85. R. Akimoto, M. Kobayashi, and T. Suzuki, J. Phys. Soc. Jpn. 62, 1490 (1993).

    Article  ADS  Google Scholar 

  86. G. Chen, N. A. Stump, R. G. Haire, J. B. Bums, and J. R. Peterson, High Press. Res. 12, 83 (1994).

    Article  ADS  Google Scholar 

  87. G. Chen, N. A. Stump, R. G. Haire, J. R. Peterson, and M. M. Abraham, J. Phys. Chem. Solids 53, 1253 (1992).

    Article  ADS  Google Scholar 

  88. C. X. Guo, B. Li, Y. E He, and H. B. Cui, J. Luminescence 48, 489 (1991).

    Article  Google Scholar 

  89. G. M. Murray, G. D. Delcul, G. M. Begun, R. G. Haire, J. P. Young, and J. R. Peterson, Chem. Phys. Lett. 168, 473 (1990).

    Article  ADS  Google Scholar 

  90. G. M. Murray, G. D. Delcul, S. E. Nave, C. T. P. Chang, R. G. Haire, and J. R. Peterson, Eur. J. Sol. State Inorg. Chem. 28, 105 (1991).

    Google Scholar 

  91. G. D. Delcul, G. R. Haire, and J. R. Peterson, J. Alloys Comp 181, 63 (1992).

    Article  Google Scholar 

  92. G. D. Hager and G. A. Crosby, J. Am. Chem. Soc. 97, 7042 (1975).

    Article  Google Scholar 

  93. G. D. Hager, R. J. Watts, and G. A. Crosby, J. Am. Chem. Soc. 97, 1037 (1975).

    Google Scholar 

  94. K. W. Hipps and G. A. Crosby, J. Am. Chem. Soc. 97, 7042 (1975).

    Article  Google Scholar 

  95. J. van Houten and R. J. Watts, J. Am. Chem. Soc. 98, 4853 (1976).

    Article  Google Scholar 

  96. M. L. Fetterolf and H. W. Offen, J. Phys. Chem. 89, 3320 (1985).

    Article  Google Scholar 

  97. M. L. Fetterolf and H. W. Offen, J. Phys. Chem. 90, 1828 (1986).

    Article  Google Scholar 

  98. T. Hiraga, N. Kitamura, H. Kim, S. Tazuke, and N. Mori, J. Phys. Chem. 93, 2940 (1989).

    Article  Google Scholar 

  99. H. Yersin and E. Gallhuber, Inorg. Chem. 23, 3745 (1994).

    Article  Google Scholar 

  100. J. W. Kenney, III, D. R. Boone, D. R. Striplin, Y. H. Chen, and K. B. Hamar, Organometallics 12, 3671 (1993).

    Article  Google Scholar 

  101. T. L. Constantopoulos, Master’s Thesis, Eastern New Mexico University (1994).

    Google Scholar 

  102. D. A. Palmer and H. Kelm, Coord. Chem. Rev. 36, 89 (1981).

    Article  Google Scholar 

  103. W. Weber, R. van Eldik, H. Kelm, J. Dibenedetto, Y. Ducommun, H. Offen, and P. C. Ford, Inorg. Chem. 22, 623 (1983).

    Article  Google Scholar 

  104. W. Weber, J. DiBenedetto, H. Offen, R. van Eldik, and P. C. Ford, Inorg. Chem. 23, 2033 (1984).

    Article  Google Scholar 

  105. P. C. Ford, in Inorganic High Pressure Chemistry: Kinetics and Mechanisms, R. van Eldik, ed., pp. 313–330, Elsevier, New York (1986).

    Google Scholar 

  106. E C. Ford and D. R. Crane, Coord. Chem. Rev. 111, 153 (1991).

    Article  Google Scholar 

  107. M. L. Fetterolf and H. W. Offen, Inorg. Chem. 26, 1070 (1987).

    Article  Google Scholar 

  108. M. M. Li, D. J. Strachan, T. M. Ritter, M. Tamargo, and B. A. Weinstein, Phys. Rev. B. 50, 4385 (1994).

    Article  ADS  Google Scholar 

  109. S. W. Kirchoefer, N. Holonyak, Jr., K. Hess, K. Meehan, D. A. Gulino, H. G. Drickamer, J. J. Coleman, and P. D. Dapkus, I Appt Phys. 21, 6037 (1982).

    Article  ADS  Google Scholar 

  110. R. J. Warburton, T. P. Beales, N. J. Mason, R. J. Nicholas, and R. J. Walker, Semicon. Sci. Tech. 6, 527 (1991).

    Article  ADS  Google Scholar 

  111. P Perlin, T. P. Sosin, W. Trzeciakowski and E. Litwin-Staszewska, Phys. Chem. Solids 56, 411 (1995).

    Article  ADS  Google Scholar 

  112. M. S. Boley, R. J. Thomas, M. Chandrasekhar, H. R. Chandrasekhar, A. K. Ramdas, M. Kobayashi, and R. L. Gunshor, I Appl. Phys. 74, 4136 (1993).

    Article  ADS  Google Scholar 

  113. L. S. Whatley and A. van Valkenburg, in Advances in High Pressure Research, R. S. Bradley, ed., Vol. 1, p. 334, Academic Press, New York (1966).

    Google Scholar 

  114. S. E. Babb and W. Robertson, in High Pressure Physics and Chemistry, R. S. Bradley, ed., p. 375, Academic Press, New York (1963).

    Google Scholar 

  115. Y. Ishida, N. Iwasaki, K. Asaunmi, T. Yajima, and Y. Maruyama, Appl. Phys. B 38, 159 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kenney, J.W. (1999). Pressure Effects on Emissive Materials. In: Roundhill, D.M., Fackler, J.P. (eds) Optoelectronic Properties of Inorganic Compounds. Modern Inorganic Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6101-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6101-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3273-0

  • Online ISBN: 978-1-4757-6101-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics