Skip to main content

Nonlinear Optical Properties of Inorganic Clusters

  • Chapter
Optoelectronic Properties of Inorganic Compounds

Part of the book series: Modern Inorganic Chemistry ((MICE))

Abstract

Living in an electronic age, one is inclined to take for granted the convenience provided by electronic devices and rarely has time to stop and think about the limitations of the electronics. It has not yet been widely recognized that the role of electrons in the information technology of the 20th century may be replaced by photons in the 21st century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Syms and J. Cozens, Optical Guided Waves and Devices, McGraw-Hill, London (1993); J. M. Senior, Optical Fiber Communications: Principles and Practices, 2nd edn., Prentice-Hall, New York (1992); G. I. Stegeman and R. H. Stolen, J. Opt. Soc. Am. B 6, 652 (1989);Parallel Processing’, Proceedings International Parallel Processing Symposium, IEEE Computer Society, Los Alamos (1993); G. P. Agrawal, Fiber-optic Communication Systems, Wiley, New York (1993).

    Google Scholar 

  2. D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, Vols. 1 and 2, Academic Press, New York (1987).

    Google Scholar 

  3. A. Billings, Optics, Optoelectronics and Photonics: Engineering Principles and Applications, Prentice Hall, New York (1993).

    Google Scholar 

  4. P. N. Prasad and D. Williams, Introduction to Nonlinear Optical Effects in Molecules and Applications, Wiley, New York (1991).

    Google Scholar 

  5. D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, Orlando (1987); S. R. Marder, J. E. Sohn, and G. D. Stucky, eds., Materials for Nonlinear Optics, Chemical Perspectives, American Chemical Society, Washington, D.C. (1991).

    Google Scholar 

  6. See, for example, H. Huang, ed., Optical Nonlinearities and Instabilities in Semiconductors, Academic Press, Boston (1988) J. L. Bredas, C. Adant, P. Tackx, and A. Persoons, Chem. Rev. 94, 243 (1994)H. Nakanishi, Nonlinear Optics 1, 223 (1991) M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991).

    Google Scholar 

  7. J. S. Meth, H. Vanherzeele, and Y. Wang, Chem. Phys. Lett. 197, 26 (1992) K. Harigaya and S. Abe, Jpn. J. Appl. Phys. 31, L887 (1992) T. W. Ebbesen, K. Tanigaki, and T. Kuroshima, Chem. Phys. Lett. 181, 501 (1991) T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Van Stryland, J. Perry, and D. R. Coulter, Appl. Phys. B 54, 46 (1992).

    Article  Google Scholar 

  8. See, for example, R. A. Hann and D. Bloor, eds., Organic Materials for Nonlinear Optics, The Royal Society of Chemistry, London (1989) M. F. Kajzar, P. Prasad, and D. Ulrich, eds., Nonlinear Optical Effects in Organic Polymers, NATO ASI Series E, 162, Kluwer, Dordrecht (1989).

    Google Scholar 

  9. T. E Boggess, G. R. Allan, S. J. Rychnovsky, D. R. Labergerie, C. H. Venzke, A. L. Smirl, L. W. Tutt, A. R. Kost, S. W. McCahon, and M. B. Klein, Opt. Eng. 32, 1063 (1993); D. M. Murphy, D. M. P. Mingos, and J. M. Forward, J. Mater. Chem. 3, 67 (1993)L. W. Tutt and S. W. McCahon, Opt. Lett. 15, 700 (1990) G. R. Allan, D. R. Labergerie, S. J. Rychnovsky, T. F. Boggess, and A. L. Smirl, J. Phys. Chem. 96, 6313 (1992).

    ADS  Google Scholar 

  10. M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, Appl. Phys. Lett. 59, 1272 (1991) G. F. Neumark, R. M. Park, and J. M. DePuydt, Phys. Today 47 (6), 26 (1994).

    Article  Google Scholar 

  11. G. I. Stegeman and W. Torruellas, Mater. Res. Soc. Symp. Proc. 328, 397 (1994).

    Article  Google Scholar 

  12. S. Shi, H. W. Hou, and X. Q. Xin, J. Phys. Chem. 99, 4050 (1995).

    Article  Google Scholar 

  13. R. Cao, S. J. Lei, M. C. Hing, Z. Y. Huang, and H. Q. Lin, Chin. J. Struct. Chem. 11, 34 (1992).

    Google Scholar 

  14. H. W. Hou, X. Q. Xin, X. X. Huang, J. H. Cai, and B. S. Kong, Chin. Chem. Lett. 6, 91 (1995).

    Google Scholar 

  15. A. Müller, V. Schimanski, and J. Schimanski, Inorg. Chim. Acta 76, L245 (1983).

    Article  Google Scholar 

  16. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van St yland, IEEE J. Quantum Electron. 26, 760 (1990).

    Article  ADS  Google Scholar 

  17. In fact, the temperature coefficient of the refractive index, do/dT, is known to be negative for most of the common organic solvents. For example, see J. A. Riddick, W. B. Bunger, and T. K. Sanako, Organic Solvents: Physical Properties and Method of Purification, 4th edn., Wiley, New York (1986).

    Google Scholar 

  18. S. Shi, W. Ji, W. Xie, T. C. Chong, H. C. Zeng, J. P. Lang, and X. Q. Xin, Mater. Chem. Phys. 39, 298 (1995).

    Article  Google Scholar 

  19. H. W. Hou, X. R. Ye, J. Liu, M. Q. Chen, and S. Shi, Chem. Mater. 7, 472 (1995) H. W. Hou, Thesis, Nanjing Univ., China (1995).

    Google Scholar 

  20. E Ge, S. H. Tang, W. Ji, S. Shi, H. W. Hou, D. L. Long, X. Q. Xin, S. F. Lu, and Q. J. Wu, J. Phys. Chem. 101, 27 (1997).

    Google Scholar 

  21. H. W. Hou, D. L. Long, X. Q. Xin, X. X. Huang, B. S. Kang, P. Ge, W. Ji, and S. Shi, Inorg. Chem. 35, 5363 (1996).

    Article  Google Scholar 

  22. H. W. Hou, X. Q. Xin, J. Liu, M. Q. Chen, and S. Shi, J. Chem. Soc., Dalton Trans. 3211 (1994).

    Google Scholar 

  23. N. Finlayson, W. C. Banyai, C. T. Seaton, G. I. Stegeman, M. O’Neill, T. J. Cullen, and C. N. Ironside, J. Opt. Soc. Am. B 6, 675 (1989).

    Article  ADS  Google Scholar 

  24. W. Ji, P. Ge, W. Xie, S. H. Tang, and S. Shi, J. Lumin. 66 and 67, 115 (1996).

    Google Scholar 

  25. W. Xie, Thesis, National University of Singapore (1996).

    Google Scholar 

  26. E Henari, J. Callaghan, H. Stiel, W. Blau, and D. J. Cardin, Chem. Phys. Lett. 199, 144 (1992) D. G. McLean, R. L. Sutherland, M. C. Brant, D. M. Brandelik, P. A. Fleitz, and T. Pottenger, Opt. Lett. 18, 858 (1993).

    Google Scholar 

  27. T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Van Stryland, J. W. Perry, and D. R. Coulter, Appl. Phys. B 54, 46 (1992) L. W. Tutt, and S. W. McCahon, Opt. Lett. 15, 700 (1990) G. R. Allan, D. R. Labergerie, S. J. Rychnovsky, T. E Boggess, A. L. Smirl, and L. Tutt, J. Phys. Chem. 96, 6313 (1992) T. E Boggess, G. R. Allan, S J. Rychnovsky, D. R. Labergerie, C. H. Venzke, A. L. Smirl, L. W. Tutt, A. R. Kost, S. W. Mcahon, and M. B. Klein, Opt. Eng. 32, 1063 (1993) A. Kost, L. Tutt, M. B. Klein, T. K. Dougherty, and W. E. Elias, Opt. Lett. 18, 334 (1993).

    Article  Google Scholar 

  28. S. Shi, Z. Y. Lin, Y. Mo, and X. Q. Xin, J. Phys. Chem. 100, 10696 (1996).

    Article  Google Scholar 

  29. S. Shi, unpublished results.

    Google Scholar 

  30. A. Yariv, Quantum Electronics, p. 153, Wiley, New York (1975).

    Google Scholar 

  31. F. Kajzar and J. Messier, J. Opt. Soc. Am. B 4, 1040 (1987); E Kajzar and J. Messier, in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds., Vol. 2, p. 51, Academic Press, New York (1987).

    Google Scholar 

  32. One exception is (n-Bu4N)3[MoOS3Cu3BrI3], see P. E. Hoggard, H. W. Hou, X. Q. Xin, and S. Shi, Mater. Chem. 12 225 (1996).

    Google Scholar 

  33. S. Shi, W. Ji, J. P. Lang, and X. Q. Xin, J. Phys. Chem. 98, 3570 (1994).

    Article  Google Scholar 

  34. S. Shi, W. Ji, S. H. Tang, J. P. Lang, and X. Q. Xin, J Am. Chem. Soc. 116, 3615 (1994).

    Article  Google Scholar 

  35. For example, S. Harris, Polyhedron 8, 2843 (1989) I. Dance, Polyhedron 5, 1037 (1986) T. Herskovitz, B. A. Averill, R. H. Holm, J. A. Ibers, W. D. Phillips, and J. E Weiher, Proc. Natl. Acad. Sci. U.S.A. 69, 2437 (1972).

    Article  Google Scholar 

  36. J. P. Lang, S. A. Bao, H. Z. Zhu, and X. Q. Xin, Chin. J. Chem. 11, 126 (1993).

    Article  Google Scholar 

  37. H. W. Hou, X. Q. Xin, and S. Shi, J. Inorg. Chem. 12, 225 (1996).

    Google Scholar 

  38. R. C. C. Leite, S. P. S. Porto, and T. C. Damen, Appl. Phys. Lett. 10, 100 (1967) 731 (1983) E. W. Van Stryland, Y. Y. Wu, D. J. Hagan, M. J. Soileau, and K. Mansour, J. Opt. Soc. Am. B 5, 1980 (1988).

    Article  Google Scholar 

  39. C. R. Giuliano and L. D. Hess, IEEE J Quantum Electron. 3, 358 (1967).

    Article  ADS  Google Scholar 

  40. D. J. Hagan, T. Xia, A. A. Said, T. H. Wei, and E. W. Van Stryland, Int. J. Nonlinear Opt. Phys. 2, 483 (1993) J. W. Perry, K. Mansour, S. R. Marder, K. J. Perry, D. Alvarez, and I. Choong, Opt. Lett. 19, 624 (1994).

    Article  Google Scholar 

  41. W. Ji, H. J. Du, S. H. Tang, and S. Shi, J. Opt. Soc. Am. B 12, 876 (1995).

    Article  ADS  Google Scholar 

  42. Defined as the incident fluence needed to reduce the real transmittance through the NLO material to one-half of the hypothetical transmittance calculated by Beer’s law.

    Google Scholar 

  43. W. Ji, H. J. Du, S. H. Tang, S. Shi, J. P. Lang, and X. Q. Xin, Singapore J Phys. 11, 55 (1995); H. J. Du, Thesis, National University of Singapore (1995).

    Google Scholar 

  44. R. C. Weast, ed., CRC Handbook of Chemistry and Physics, 75th edn., CRC Press, London (1994).

    Google Scholar 

  45. G. Sakane, T. Shibahare, H. W. Hou, X. Q. Xin, and S. Shi, Inorg. Chem. 34, 4785 (1995).

    Article  Google Scholar 

  46. W. Ji, S. Shi, H. J. Du, P. Ge, S. H. Tang, and X. Q. Xin, J. Phys. Chem. 99, 17297 (1995); A. Müller, H. Bögge, E. Königer-Ahlbom, and W. Hellmann, Inorg. Chem. 18, 2301 (1979).

    Article  Google Scholar 

  47. T. Mashiko and Dolphin, in Comprehensive Coordination Chemistry, G. Wilkinson ed., p. 813, Pergamon Press, Oxford (1987).

    Google Scholar 

  48. T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Van Stryland, J. W. Perry, and D. R. Coulter, Appl. Phys. B 54, 46 (1992).

    Article  ADS  Google Scholar 

  49. S. Shi, Z. R. Chen, H. W. Hou, X. Q. Xin, and K. B. Yu, Chem. Mater. 7, 1519 (1995).

    Article  Google Scholar 

  50. Z. R. Chen, H. W. Hou, X. Q. Xin, K. B. Yu, and S. Shi, J. Phys. Chem. 99, 8717 (1995).

    Article  Google Scholar 

  51. H. W. Hou, B. Liang, X. Q. Xin, K. B. Yu, P. Ge, W. Ji, and S. Shi, J. Chem. Soc. Faraday Trans. 92, 2343 (1996).

    Article  Google Scholar 

  52. See, for example, P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, Cambridge, New York (1990).

    Google Scholar 

  53. H. W. Hou, X. Q. Xin, and S. Shi, Coord. Chem. Rev. 153, 25 (1996).

    Article  Google Scholar 

  54. J. M. Manoli, C. Potvin, E Secheresse, and S. Marzak, Inorg. Chim. Acta. 150, 257 (1988); E. Secheresse, S. Bernes, E. Robert, and Y. Jeannin, J. Chem. Soc., Dalton Trans. 2875 (1991).

    Google Scholar 

  55. E Ge, S. H. Tang, W. Ji, S. Shi, H. W. Hou, D. L. Long, X. Q. Xin, S. F. Lu, and Q. J. Wu, J. Phys. Chem. 101, 27 (1997).

    Google Scholar 

  56. S. Shi, W. Ji, and X. Q. Xin, J. Phys. Chem. 99, 894 (1995).

    Article  Google Scholar 

  57. W. Ji, W. Xie, S. H. Tang, and S. Shi, Mater. Chem. Phys. 43, 45 (1996).

    Article  Google Scholar 

  58. S. Shi, X. Zhang, and X. E Shi, J. Phys. Chem. 99, 14911 (1995).

    Article  Google Scholar 

  59. D. M. Murphy, D. M. P. Mingos, and J. M. Forward, J. Mater. Chem. 3, 67 (1993).

    Article  Google Scholar 

  60. N. J. Long, Angew. Chem., Int. Ed. Engl. 34, 21 (1995).

    Article  Google Scholar 

  61. N. Y. Zhu, S. W. Du, P. C. Zhen, X. T. Wu, and J. X. Lu, J. Coord. Chem. 26, 35 (1992).

    Article  Google Scholar 

  62. A. Müller, H. Bogge, and V. Schimanski, Inorg. Chim. Acta 69, 5 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shi, S. (1999). Nonlinear Optical Properties of Inorganic Clusters. In: Roundhill, D.M., Fackler, J.P. (eds) Optoelectronic Properties of Inorganic Compounds. Modern Inorganic Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6101-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6101-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3273-0

  • Online ISBN: 978-1-4757-6101-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics