Skip to main content

Metallo-Organic Materials for Optical Telecommunications

  • Chapter
Optoelectronic Properties of Inorganic Compounds

Part of the book series: Modern Inorganic Chemistry ((MICE))

  • 233 Accesses

Abstract

Metallo-organic compounds are just one class of “molecular materials” currently attracting intense interest for their potential use in telecommunications devices. Other types of molecular material include wholly organic polymers containing push—pull, electron donor—acceptor combinations in either the main-chain or most often as side-chain substituents1; highly conjugated main-chain polymers,2 e.g., polyacetylenes, polypyrroles, polyphenylenevinylenes, etc.; and more complex macrocyclics such as C60 and related fullerenes.3,4 In each case the principal property of interest is the optical nonlinearity, either x 2 or x 3 , where the susceptibility may have both real and imaginary components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. A. Lindsay and K. D. Singer, (eds)., Polymers for Second-Order Nonlinear Optics, ACS Symposium Series 601, ACS Washington (1995).

    Google Scholar 

  2. See for example: G. J. Ashwell and D. Bloor, (eds)., Organic materials for nonlinear optics III, Roy. Soc. Chem. (1993); D. S. Chemla and J. Zyss (eds.), Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, London (1987); P. N. Prasad and D. Ulrich, eds., Nonlinear Optical and Electro-Active Polymers, Plenum Press, New York (1988).

    Google Scholar 

  3. W. J. Blau, H. J. Byrne, D. J. Cardin, T. J. Dennis, J. P. Hare,. H. W. Kroto, R. Taylor, and D. R. M. Walton, Phys. Rev. Lett. 67, 1423 ( 1991 ).

    Google Scholar 

  4. J. E. Wray, K. C. Liu, C. H. Chen, W. G. Garrett, M. G. Payne, R. Goedert, and D. Templeton, Appl. Phys. Rev. Lett. 64, 2785 (1994).

    Article  ADS  Google Scholar 

  5. R. J. Manning, D. A. O. Davies, D. Cotter, and J. K. Lucek, Electron. Lett. 30, 787 (1994).

    Article  ADS  Google Scholar 

  6. P. Roussignol, D. Ricard, and C. Flytzanis, Appl. Phys. A 44, 285 (1987).

    Article  ADS  Google Scholar 

  7. J. B. Bloemer, J. Haus, and P. R. Ashley, J. Opt. Soc. Am. B. 7, 790 (1990).

    Article  ADS  Google Scholar 

  8. R. Lytel, A. J. Ticknor, and G. E Lipscomb, Organic Materials for Nonlinear Optics III, G. J. Ashwell and D. Bloor, eds., pp 414–419, Roy. Soc. Chem. (1993).

    Google Scholar 

  9. G. I. Stegeman, M. Sheik-Bahae, E. VanStryland, and G. Assanto, Opt. Lett. 18, 13 (1993); W. E. Torruellas, D. Y. Kim, M. Jaeger, G. Krijen, R. Schick, G. I. Stegeman, P. Vidakovic, and J. Zyss in G. A. Lindsay and K. D. Singer, eds., Polymers for Second-Order Nonlinear Optics, pp. 509–521, ACS Symposium Series 601, ACS, Washington (1995).

    Google Scholar 

  10. R. Schick, UY. Back, D. Y. Kim, M. L. Sundheimer, and G. I. Stegeman, in Proc. 7th Eur. Conf on Int. Opt. (ECIO ‘85), pp 339–341 (1995).

    Google Scholar 

  11. L. Torner, C. R. Menyuk, and G. I. Stegeman, Opt. Lett. 19, 1615 (1994).

    Article  ADS  Google Scholar 

  12. L. W Tutt and T. F. Boggess, Prog. Quant. Electron. 17, 299 (1993).

    Article  ADS  Google Scholar 

  13. M. Sjheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. VanStryland, SPIE 1105, 146 (1989).

    Article  ADS  Google Scholar 

  14. S. C. Abrahams, ed., Properties of Lithium Niobate, EMIS Data reviews Series 5, INSPEC, Inst. Elec. Eng., London (1989).

    Google Scholar 

  15. M. C. Tatham and G. Sherlock, paper PD1, Proc. Int. Photon. Res., Palm Springs (1993).

    Google Scholar 

  16. A. D. Ellis and D. M. Spirit, Electron. Letts. 29, 2115 (1993).

    Article  Google Scholar 

  17. R. J. Manning and D. A. O. Davies, Opt. Letts. 19, 889 (1994).

    Article  ADS  Google Scholar 

  18. K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, Electron. Lett. 29, 1870 (1993).

    Article  Google Scholar 

  19. T. Morioka, S. Kawanishi, K. Uchiyama, H. Takara, and M. Saruwtari, Electron. Letts. 30, 591 (1994).

    Article  ADS  Google Scholar 

  20. T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, Electron. Letts. 31, 573 (1995).

    Article  ADS  Google Scholar 

  21. M.-V Bergot, M. C. Farries, M. E. Ferman, L. Li., L. J. Poyntz-Wright, P. St. J. Russell, and A. Smithson, Opt. Lett. 13, 592 (1988).

    Article  Google Scholar 

  22. W. M. Laidlaw, R. G. Denning, T. Verbiest, E. Chauchard, and A. Persoons, Nature 363, 58 (1993).

    Article  ADS  Google Scholar 

  23. N. J. Long, Agnew. Chem., Int. Ed. Engl. 34, 21 (1995).

    Article  Google Scholar 

  24. G. I. Stegeman, Nonlinear Opt. 3, 337 (1992).

    Google Scholar 

  25. V. Mizrahi, K. W DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, Opt. Lett. 14, 1140 (1989).

    Article  ADS  Google Scholar 

  26. S. V. Kershaw, J. Mod. Opt. 42, 1361 (1995).

    Article  ADS  Google Scholar 

  27. D. M. Patrick and R. J. Manning, Elec. Lett. 30, 151 (1994).

    Article  Google Scholar 

  28. P. A. Miles, SPIE 2143, 251 (1994).

    Article  ADS  Google Scholar 

  29. J. Castillo, V. P. Kozich, and A. Marcano O., Opt. Lett. 19, 171 (1994).

    Article  ADS  Google Scholar 

  30. D. J. McGraw, A. E. Siegman, G. M. Wallraff, and R. D. Miller, Appl. Phys. Lett. 54, 1713 (1989); S. A. Jenekhe, W C. Chen, S. K. Lo, and S. R. Flom, Appl. Phys. Lett. 57, 126 (1990).

    Article  Google Scholar 

  31. M. Sheik-bahe, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 24, 760 (1990).

    Article  ADS  Google Scholar 

  32. Measurement of the third-order hyperpolarizability of platinum poly-ynes: S. Guha, C. C. Frazier, P. L. Porter, K. Kang, and S. E. Finberg, Opt. Lett. 14, 952 (1989).

    Article  Google Scholar 

  33. Third-order optical nonlinearities of metallotetrabenzoporphyrins and a platinum poly-yne: S. Guha, K. Kang, P. Porter, J. F. Roach, D. E. Remy, F. J. Aranda, and D. V. G. L. N. Rao, Opt. Lett. 17, 264 (1992); Nonlinear devices using organometallic polymers: S. Guha, C. C. Frazier, W P. Chen, P. Porter, K. Kang, and S. E. Finberg, SPIE 1105, 14 (1989).

    Article  Google Scholar 

  34. Four-wave mixing in metal poly-ynes: C. C. Frazier, E. A. Chauchard, M. P. Cockerham, and P. L. Porter, Mat. Res. Soc. Symp. Proc 109, 323 (1988).

    Google Scholar 

  35. Nonlinear optical properties of transition metal poly-ynes: C. C. Frazier, S. Guha, P. L. Porter, P. M. Cockerham, and E. A. Chauchard, SPIE 971, 186 (1988).

    Article  Google Scholar 

  36. H. Page, W Blau, A. P. Davey, X. Lou, and D. J. Cardin, Synth. Met. 63, 179 (1994).

    Article  Google Scholar 

  37. W. J. Blau, H. J. Byrne, D. J. Cardin, and A. P. Davey, J. Mater. Chem. 1, 245 (1991).

    Article  Google Scholar 

  38. Nonlinear optical studies of molybdenum metal organics: T. Zhai, C. M. Lawson, G. E. Burgess, M. L. Lewis, D. C. Gale, and G. M. Gray, Opt. Lett. 19, 871 (1994).

    Google Scholar 

  39. Nonlinear optical properties of transition metal—phosphine complexes: T. Zhai, C. M. Lawson, D. C. Gale, and G. M. Gray, Opt. Mater. 4, 455 (1995).

    Article  Google Scholar 

  40. Enhancement of third-order nonlinearity of phthalocyanine compounds: M. Hosoda, T. Wada, A. Yamada, A. E Garito, and H. Sasabe, Mat. Res. Soc. Symp. Proc. 175, 89 (1990).

    Google Scholar 

  41. Nonlinear optical properties of substituted phthalocyanines: J. S. Shirk, J. R. Lindle, E. J. Bartoli, Z. H. Kafafi, and A. W. Snow, ACS Symposium Series 455, pp. 626–634 (1991).

    Article  Google Scholar 

  42. Enhancements in third-order optical properties of phthalocyanine thin films: M. Hosoda, T. Wada, A. Yamada, A. E Garito, and H. Sasabe, SPIE 1337, 99 (1990).

    Google Scholar 

  43. Phases and third-order optical nonlinearities in tetravelent metallophthalocyanine thin films: M. Hosoda, T. Wada, A. Yamada, A. E Garito, and H. Sasabe, Jap. J. Appl. Phys. 30, L1486 (1991).

    Article  Google Scholar 

  44. Resonant third-order optical response in lead phthalocyanines: S. R. Flom, J. S. Shirk, R. G. S. Pong, J. R. Lindle, E J. Bartoli, M. E. Boyle, and A. W. Snow, in Conf. Proc. IQEC’ 94, p. 95, Opt. Soc. Am., Washington (1994).

    Google Scholar 

  45. Third-order nonlinear optical properteis of donor-and acceptor-substituted metallophthalocyanines: H. S. Nalwa and A. Kakuta, Thin Solid Films 254, 218 (1995).

    Article  Google Scholar 

  46. Third-order nonlinear optical properties of processable metallo-naphthalocyanine dyes: H. S. Nalwa, S. Kobayashi, and A. Kakuta, Nonlinear Opt. 6, 169 (1993).

    Google Scholar 

  47. Molecular structural view on the large third-order nonlinearity of phthalocyanine derivatives: H. Matsuda, S. Okada, A. Masaki, H. Nakanishi, Y. Suda, K. Shigehara, and A. Yamada, SPIE 1337, 105 (1990).

    Article  ADS  Google Scholar 

  48. Reversible phase transition and third-order nonlinearity of phthalocyanine derivatives: Y. Suda, K. Shigehara, A. Yamada, H. Matsuda, S. Okada, A. Masaki, and H. Nakanishi, SPIE 1560, 75 (1991).

    Article  Google Scholar 

  49. Electroabsorption of metallophthalocyanines: T. Wada, S. Yanagi, H. Kobayashi, J. Kumar, K. Sasaki, and H. Sasabe, SPIE 2143, 172 (1994).

    Google Scholar 

  50. Electroabsorption spectra and nonlinear optical susceptibility of tetrakis t-butyl phthalocyanine: S. Yanagi, T. Wada, J. Kumar, H. Sasabe, and K. Sasaki, Mol. Cryst. Liq. Cryst. 255, 182 (1994).

    Google Scholar 

  51. Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines: T. H. Wei, D. J. Hagan, M. J. Spence, E. W. Van Stryland, J. W. Perry, and D. R. Coulter, Appl. Phys. B 54, 46 (1992).

    Google Scholar 

  52. Measurement of the third-order susceptibility of quasi-two-dimensional conjugated discs: Silicon naphthalocyanine: W. Q. Wang, Y. M. Cai, J. R. Heflin, and A. E Garito, Mol. Cryst. Liq. Cryst. 189, 39 (1990).

    Google Scholar 

  53. Side-chain copolymers for third-order nonlinear optical applications: J. R. Sounik, R. A. Norwood, J. Popolo, and D. Holcomb, Polym. Prep., Am. Chem. Soc., Div. Polym. Chem. 32, 158 (1991).

    Google Scholar 

  54. Excited state absorption and dynamics in a Pb-Phthalocyanine copolymer: S. R. Flom, J. S. Shirk, R. G. S. Pong, J. R. Lindle, and E J. Bartoli, SPIE 2143, 229 (1994).

    Google Scholar 

  55. Third-order nonlinear optical interactions of some benzoporphyrins: D. V. G. L. N. Rao, E. J. Aranda„ J. E Roach, and D. E. Remy, Appl. Phys. Lett. 58, 1241 (1991).

    Google Scholar 

  56. Third-order optical nonlinearities in organic macrocycles: M. Hosoda, T. Wada, and H. Sasabe, Nonlinear Opt. 7, 199 (1994).

    Google Scholar 

  57. Third-order optical nonlinearities of new two-dimensional rz-conjugated metal-coordinated complexes: Q. Gong, Y. Wang, S.-C. Yang, Z. Xia, Y. H. Zou, W. Wun, S. Dong, and D. Wang, J. Phys. D: Appl. Phys. 27, 911 (1994).

    Article  Google Scholar 

  58. Cubic nonlinear optical properties of group 4 metallocene halide and acetylide complexes: L. K. Myers, C. Langhoff, and M. E. Thompson, J. Am. Chem. Soc. 114, 7560 (1992).

    Article  Google Scholar 

  59. Third-order near-resonance nonlinearities in dithiolenes and rare-earth metallocenes: C. S. Winter, S. N. Oliver, J. D. Rusch, R. J. Manning, C. Hill, and A. Underhill, in ACS Symposium Series 455, Materials for Nonliner Optics, S. R. Marder, J. E. Sohn, and G. D. Stucky, eds., (1991).

    Google Scholar 

  60. Organotransition metal and rare-earth compounds with high resonant enhanced x(3) coefficients: S. N. Oliver, C. S. Winter, J. D. Rusch, A. Underhill, and C. Hill, SPIE 1337 81 (1990).

    Google Scholar 

  61. The mixed metal cluster (n-Bu4N)2 [MoCu3OS3(NCS)3]: the first example of a nest-shaped compound with a large third-order polarizability and optical limiting effect: S. Shi, W. Ji, W. Xie, T. C. Chong, H. C. Zeng, J. P. Lang, and X. Q. Xin, Mater. Chem. Phys. 39 298 (1995).

    Google Scholar 

  62. Four-wave mixing measurements on metal organics: D. C. Gale, C. M. Lawson, T. Zhai, and G. M. Gray, SPIE 2229, 41 (1994).

    Article  Google Scholar 

  63. See, for example, Newsletter 4, of the EU Human capital and mobility programme: Network for novel third-order NLO molecular materials, May 1996. ( Network coordinator: Prof. A. E. Underhill, University of Wales, Bangor, Wales, U.K.).

    Google Scholar 

  64. C. A. S. Hill, A. E. Underhill, A. Charlton, C. S. Winter, S. N. Oliver, and J. D. Rush, SPIE 1775, 43 (1992).

    Article  ADS  Google Scholar 

  65. Z. H. Kafafi, J. R. Lindle, S. R. Flom, R. G. S. Pong, C. S. Weisbecker, R. C. Claussen, and F. J. Bartoli, SPIE 1626, 440 (1992).

    Article  ADS  Google Scholar 

  66. T. Fukaya, M. Mizuno, and S. Murata, SPIE 1626, 135 (1992).

    Article  ADS  Google Scholar 

  67. A. S. Dhindsa, A. E. Underhill, S. Oliver, and S. Kershaw, J. Mater. Chem. 5, 261 (1995).

    Article  Google Scholar 

  68. New x(3) materials for electro-optic and all-optical signal processing based on metal complexes: A. S. Dhindsa, A. E. Underhill, S. Oliver, and S. Kershaw, Nonlinear Opt. 10 115 (1995).

    Google Scholar 

  69. Large refractive nonlinearities and two-photon absorption in aryl-substituted dithiolenes: S. V. Kershaw, S. N. Oliver, R. J. Manning, J. D. Rusch, C. A. S. Hill, A. E. Underhill, and A. Charlton, SPIE 2025, 388 (1993).

    Google Scholar 

  70. Complex nonlinearity of metal dithiolenes at 1.064 and 1.321 µm: S. V. Kershaw, S. N. Oliver, A. E. Underhill, C. A. H. Hill, and A. Charlton, Opt. Commun. submitted.

    Google Scholar 

  71. Third-order nonlinear optical properties of metal dithioloene and phthalocyanine doped sol-gel materials: G. J. Gall, T. A. King, S. N. Oliver, C. A. Capozzi, A. B. Seddon, C. A. S. Hill, and A. E. Underhill, SPIE 2288, 372 (1994).

    Google Scholar 

  72. Third-order resonance-enhanced nonlinearities of polymethylmethacrylate polymers containing nickel dithiolene host molecules: A. E. Underhill, C. A. S. Hill, C. S. Winter, S. N. Oliver, and J. D. Rush, Mol. Cryst. Lig. Cryst. 217, 7 (1992).

    Google Scholar 

  73. Measurement of the large optical nonlinearity of nickel dithiolene doped polymers: C. S. Winter, R. J. Manning, S. N. Oliver, and C. A. S. Hill, Opt. Commun. 90, 139 (1992).

    Google Scholar 

  74. Third-order NLO properties of PMMA films co-dispersed with metal dithiolene oligomers: A. E. Underhill, C. A. S. Hill, A. Charlton, S. Oliver, and S. Kershaw, Synth. Met. 71, 1703 (1995).

    Google Scholar 

  75. Nonlinear polarziation coupling and instabilities in single-mode liquid-cored fibers: R. Kashyap and N. Finlayson, Opt. Lett. 17, 405 (1992).

    Article  Google Scholar 

  76. Optical Kerr shutter using organic nonlinear optical materials in capillary waveguides: H. Kanbara, H. Kobayashi, K. Kudobera, T. Kurihara, and T. Kaino, IEEE Photonics Tech. Lett. 3, 795 (1991).

    Article  Google Scholar 

  77. R. J. Manning, R. Kashyap, S. N. Oliver, and D. Cotter, in Proc. International Photonics Research Topical Meeting, Palm Springs, USA (March 1993 ).

    Google Scholar 

  78. D. Cotter, private communication.

    Google Scholar 

  79. Comparison of calculated and measured impulse responses of optical fibres: K. Okamoto, Appl. Opt. 18, 2199 (1979).

    Article  Google Scholar 

  80. L. Sarger, P. Segonds, L. Canioni, E Adamietz, A. Ducasse, C. Duchesne, E. Fargin, R. Olazuaga, and G. Le Flem, J. Opt. Soc. Am. B. 11, 995 (1994); M. Sheik-bahe, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 24, 760 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kershaw, S.V. (1999). Metallo-Organic Materials for Optical Telecommunications. In: Roundhill, D.M., Fackler, J.P. (eds) Optoelectronic Properties of Inorganic Compounds. Modern Inorganic Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6101-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6101-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3273-0

  • Online ISBN: 978-1-4757-6101-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics