Skip to main content

On a SQP-Multigrid Technique for Nonlinear Parabolic Boundary Control Problems

  • Chapter
Optimal Control

Part of the book series: Applied Optimization ((APOP,volume 15))

Abstract

We consider the application of an SQP method to an optimal control problem governed by the heat equation with nonlinear boundary conditions. The objective functional consists of a quadratic terminal part and a quadratic regularization term. To handle the quadratic optimal control subproblems with high precision, very large scale mathematical programming problems have to be treated. The solution of the constrained problem is computed by solving a sequence of unconstrained ones by a method due to Bertsekas. A multigrid approach developed by Hackbusch is applied to solve the unconstrained problems. Some numerical examples illustrate the behavior of the method.

This research was supported by Deutsche Forschungsgemeinschaft (DFG), under grant ”Tr 302/3-1”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, W. (1990), “The Lagrange-Newton method for infinite-dimensional optimization problems,” Numer. Funct. Anal. and Optimiz., Vol. 11, 201–224.

    Article  MathSciNet  MATH  Google Scholar 

  2. Alt, W. (1994), “The Lagrange Newton method for infinite-dimensional optimization problems,” Control and Cybernetics, Vol. 23, 87–106.

    MathSciNet  MATH  Google Scholar 

  3. Alt, W. (1997), “Discretization and mesh independence of Newton’s method for generalized equations,” in Mathematical Programming with Data Perturbation, A. K. Fiacco, ed., Lect. Notes in Pure and Appl. Math, Vol. 195, Marcel Dekker, New York, 1–30.

    Google Scholar 

  4. Alt, W. and Mackenroth, U. (1992), “On the numerical solution of state-constrained coercive parabolic optimal control problems,” in Optimal Control of Partial Differential Equations, K. H. Hoffmann and W. Krabs, eds., Lecture Notes ISNM, Vol. 68, Birkhäuser Verlag, Basel, 44–62.

    Google Scholar 

  5. Alt, W. and Malanowski, K. (1993), “The Lagrange-Newton method for nonlinear optimal control problems,” Comp. Opt. and Applic., Vol. 2, 77–100.

    Article  MathSciNet  MATH  Google Scholar 

  6. Alt, W., Sontag, R. and Tröltzsch, F. (1996), “An SQP method for optimal control of a weakly singular Hammerstein integral equation,” Appl. Math. Opt., Vol. 33, 227–252.

    Article  MATH  Google Scholar 

  7. Bertsekas, D.B. (1982), “Projected Newton methods for optimization problems with simple constraints,” SIAM J. Control and Optimization, Vol. 20, 221–246.

    Article  MathSciNet  MATH  Google Scholar 

  8. Casas, E., Tröltzsch, F. and Unger, A (1996), “Second order sufficient optimality conditions for a nonlinear elliptic control problem,” J. of Analysis and Applications (ZAA), Vol. 15, 687–707.

    MATH  Google Scholar 

  9. Dontchev, A.L., Hager, W.W., Poore, A.B. and Yang, B. (1995), “Optimality, stability, and convergence in optimal control,” Appl. Math. Optim., Vol. 31, 297–326.

    Article  MathSciNet  MATH  Google Scholar 

  10. Eppler, K. and Tröltzsch, F. (1986), “On switching points of optimal controls for coercive parabolic boundary control problems,” Optimization, Vol. 17, 93–101.

    MATH  Google Scholar 

  11. Gill, P.E., Park, K., Petzold, L., Rosen, J.B. and Jay, L.O., Numerical Optimal Control of Parabolic PDEs using DASOPT, Report NA 96–1, Dept. of Math., University of California, San Diego.

    Google Scholar 

  12. Gill, P.E., Murray, W., Saunders, M.A. and Wright, M.H. (1982), Users’s Guide for SOL/QPSOL: A Fortran Package for Quadratic Programming, Technical Report No. 82–7, Department of Operations Research, Stanford University, Stanford, California.

    Google Scholar 

  13. Goldberg, H. and Tröltzsch, F. (1993), “Second order sufficient optimality conditions for a class of nonlinear parabolic boundary control problems,” SIAM J. Control and Optimization, Vol. 31, 1007–1025.

    Article  MathSciNet  MATH  Google Scholar 

  14. Goldberg, H. and Tröltzsch, F., “On a Lagrange-Newton method for a nonlinear parabolic boundary control problem,” accepted for publication by Optim. Methods e.4 Software.

    Google Scholar 

  15. Hackbusch, W. (1979), “On the fast solving of parabolic boundary control problems,” SIAM J. Control and Optimization, Vol. 17, No. 2, 231–244.

    Google Scholar 

  16. Hackbusch, W. (1989), Integralgleichungen, B. G. Teubner, Stuttgart.

    Google Scholar 

  17. Hackbusch, W. and Will, Th. (1983), “A numerical method for a parabolic bang—bang problem,” Control and Cybernetics, Vol. 12, No. 3–4, 100–116.

    MathSciNet  Google Scholar 

  18. Heinkenschloss, M. (1997), “The numerical solution of a control problem governed by a phase field model,” Optimization Methods and Software, Vol. 7, 211–263.

    Article  MathSciNet  MATH  Google Scholar 

  19. Heinkenschloss, M and Sachs, E.W. (1994), “Numerical solution of a constrained control problem for a phase field model,” Control and Estimation of Distributed Parameter Systems, Int. Ser. Num. Math., Vol. 118, 171–188.

    Article  MathSciNet  Google Scholar 

  20. Heinkenschloss, M. and Tröltzsch, F., Analysis of the Lagrange–SQPNewton Method for the Control of a Phase Field Equation, Virginia Polytechnic Institute and State Unversity, ICAM Report 95–03–01.

    Google Scholar 

  21. Ito, K. and Kunisch, K. (1996), “Augmented Lagrangian-SQP methods for nonlinear optimal control problems of tracking type,” SIAM J. Control Optim., Vol. 34, 874–891.

    Article  MathSciNet  MATH  Google Scholar 

  22. Ito, K. and Kunisch, K. (1996), “Augmented Lagrangian-SQP methods in Hilbert spaces and application to control in the coefficients problems,” SIAM J. Optim., Vol. 6, 96–125.

    Article  MathSciNet  MATH  Google Scholar 

  23. Kelley, C.T. and Sachs, E.W. (1991), “Fast algorithms for compact fixed point problems with inexact function evaluations,” SIAM J. Scientific and Stat. Computing, Vol. 12, 725–742.

    Article  MathSciNet  MATH  Google Scholar 

  24. Kelley, C.T. and Sachs, E.W. (1994), “Multilevel algorithms for constrained compact fixed point problems,” SIAM J. Scientific and Stat. Computing, Vol. 15, 645–667.

    Article  MathSciNet  MATH  Google Scholar 

  25. Kelley, C.T. and Sachs, E.W. (1995), “Solution of optimal control problems by a pointwise projected Newton method,” SIAM J. Contr. Optimization, Vol. 33, 1731–1757.

    Article  MathSciNet  MATH  Google Scholar 

  26. Kupfer, S.F. and Sachs, E.W. (1992), “Numerical solution of a nonlinear parabolic control problem by a reduced SQP method,” Computational Optimization and Applications, Vol. 1, 113–135.

    Article  MathSciNet  MATH  Google Scholar 

  27. Lions, J.L. and Magenes, E. (1968), Problèmes aux limites non homogènes et applications, Vol. 1–3, Dunod, Paris.

    MATH  Google Scholar 

  28. Machielsen, K. (1987), Numerical Solution of Optimal Control Problems with State Constraints by Sequential Quadratic Programming in Function Space,CWI Tract, 53, Amsterdam.

    Google Scholar 

  29. Mackenroth, U. (1987), “Numerical solution of some parbolic boundary control problems by finite elements,” in Control Problems for Systems Described by Partial Differential Equations and Applications, Lecture Notes Contr. Inf. Sci. Vol. 97, Springer-Verlag, Berlin, 325–335.

    Chapter  Google Scholar 

  30. Maurer, H. (1981), “First and second order sufficient optimality conditions in mathematical programming and optimal control,” Math. Programming Study, Vol. 14, 163–177.

    Article  MATH  Google Scholar 

  31. Raymond, J.P. and Zidani, H., “Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations,” preprint 1995, to appear.

    Google Scholar 

  32. Schittkowski, K. (1979), “Numerical solution of a time-optimal parabolic boundary-value control problem,” JOTA, Vol. 27, 271–290.

    Article  MathSciNet  MATH  Google Scholar 

  33. Tröltzsch, F. (1994), “Convergence of an SQP-Method for a class of nonlinear parabolic boundary control problems,” in W. Desch, F. Kappel, K. Kunisch, eds., Control and Estimation of Distributed Parameter Systems. Nonlinear Phenomena, Int. Series of Num. Mathematics, Vol. 118, Birkhäuser Verlag, Basel, 343–358.

    Chapter  Google Scholar 

  34. Tröltzsch, F. (1994), “An SQP method for the optimal control of a nonlinear heat equation,” Control and Cybernetics, Vol. 23(1/2), 267288.

    Google Scholar 

  35. Tröltzsch, F., “On the Lagrange-Newton method for the optimal control of semilinear parabolic equations,” to appear 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Goldberg, H., Tröltzsch, F. (1998). On a SQP-Multigrid Technique for Nonlinear Parabolic Boundary Control Problems. In: Optimal Control. Applied Optimization, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6095-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6095-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4796-3

  • Online ISBN: 978-1-4757-6095-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics