Skip to main content

Robinson’s Strong Regularity Implies Robust Local Convergence of Newton’s Method

  • Chapter
Optimal Control

Part of the book series: Applied Optimization ((APOP,volume 15))

Abstract

For a variational inequality in a Banach space setting we show that Robinson’s strong regularity condition implies both local lipschitzian stability of solutions and robust local superlinear convergence of Newton’s method.

This research was supported by the National Science Foundation grants DMS 9500957 and DMS 9704912 for the second author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, W. and Malanowski, K. (1995), “The Lagrange-Newton method for state constrained optimal control problems,” Comput. Optim. Appl., Vol. 4, 217–239.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonnans, J.F. (1994), “Local analysis of Newton-type methods for variational inequalities and nonlinear programming,” Appl. Math. and Op-tim., Vol. 29, 161–186.

    Article  MathSciNet  MATH  Google Scholar 

  3. Dontchev, A.L. (1996), “Local analysis of a Newton-type method based on partial linearization,” in The Mathematics of Numerical Analysis (Park City, UT, 1995), Lectures in Appl. Math., Vol. 32, Amer. Math. Soc., Providence, RI, 295–306.

    Google Scholar 

  4. Dontchev, A.L. and Hager, W.W. (1993), “Lipschitzian stability in nonlinear control and optimization,” SIAM J. Control Optim., Vol. 31, 569–603.

    Article  MathSciNet  MATH  Google Scholar 

  5. Dontchev, A.L. and Hager, W.W. (1996), “Lipschitzian stability for state constrained nonlinear optimal control,” SIAM J. Control Optim., to appear.

    Google Scholar 

  6. Dontchev, A.L. and Rockafellar, R.T. (1996), “Characterizations of strong regularity for variational inequalities over polyhedral convex sets,” SIAM J. Optim., Vol. 6, 1087–1105.

    Article  MathSciNet  MATH  Google Scholar 

  7. Eaves, B.C. (1978), A Locally Quadratically Convergent Algorithm for Computing Stationary Points, Technical Report, Department of Operations Research, Stanford University.

    Google Scholar 

  8. Josephy, N.H. (1979), Newton’s Method for Generalized Equations, Technical Summary Report 1965, Mathematics Research Center, University of Wisconsin-Madison.

    Google Scholar 

  9. Kummer, B. (1992), “Newton’s method based on generalized derivatives for nonsmooth functions: convergence analysis,” in Advances in Optimization, Lambrecht, ed., Lecture Notes in Econom. and Math. Systems, Vol. 382, Springer-Verlag, Berlin, 171–194.

    Google Scholar 

  10. Pang, J.S. (1990), “Newton’s method for B-differentiable equations,” Math. Oper. Res., Vol. 15, 311–341.

    Article  MathSciNet  MATH  Google Scholar 

  11. Qi, L.Q. and Sun, J. (1993), “A nonsmooth version of Newton’s method,” Math. Programming, Vol. 58, Ser. A, 353–367.

    Google Scholar 

  12. Robinson, S.M. (1976), An Implicit Function Theorem for Generalized Variational Inequalities, Technical Summary Report 1672, Mathematics Research Center, University of Wisconsin-Madison.

    Google Scholar 

  13. Robinson, S.M. (1980), “Strongly regular generalized equations,” Math. Oper. Res., Vol. 5, 43–62.

    Article  MathSciNet  MATH  Google Scholar 

  14. Robinson, S.M. (1991), “An implicit-function theorem for a class of nonsmooth functions,” Math. Oper. Res., Vol. 16, 292–309.

    Article  MathSciNet  MATH  Google Scholar 

  15. Robinson, S.M. (1994), “Newton’s method for a class of nonsmooth functions,” Set-Valued Analysis, Vol. 2, 291–305.

    Article  MathSciNet  MATH  Google Scholar 

  16. Tröltzsch, F. (1994), “An SQP method for the optimal control of a nonlinear heat equation,” Parametric optimization. Control Cybernet, Vol. 23, 267–288.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dokov, S.P., Dontchev, A.L. (1998). Robinson’s Strong Regularity Implies Robust Local Convergence of Newton’s Method. In: Optimal Control. Applied Optimization, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6095-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6095-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4796-3

  • Online ISBN: 978-1-4757-6095-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics