Skip to main content

Cut-Loci and Cusp Singularities in Parametrized Families of Extremals

  • Chapter
Optimal Control

Part of the book series: Applied Optimization ((APOP,volume 15))

Abstract

We analyze the simple cusp singularity arising in the flow of a parametrized family of extremals. The simple cusp point generates a region in the state space which is covered 3:1 with both locally minimizing and maximizing branches. The changes from the locally minimizing to the maximizing branch away from the simple cusp point occur at fold-loci and there trajectories lose strong local optimality. However, the two minimizing branches intersect and generate a cut-locus which limits the optimality of the close-by trajectories and eliminates these trajectories from optimality near the cusp point prior to the conjugate point. In the language of PDE, the simple cusp in the parametrized flow of extremals generates a shock in the corresponding solution to the Hamilton-Jacobi-Bellman equation.

This research was supported in part by NSF Grant DMS-9503356.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berkovitz, L. (1974), Optimal Control Theory, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  2. Boltyansky, V.G. (1966), “Sufficient conditions for optimality and the justification of the dynamic programming method,” SIAM J. Control, Vol. 4, No. 2,326–361.

    Article  MathSciNet  Google Scholar 

  3. Boothby, W.M. (1975), An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, New York.

    MATH  Google Scholar 

  4. Brunovsky, P. (1980), “Existence of regular synthesis for general control problems,” J. Differential Equations, Vol. 38, 317–343.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bryson Jr., A.E. and Ho, Y.C. (1975), Applied Optimal Control, Hemisphere Publishing Company, New York.

    Google Scholar 

  6. Byrnes, C.I. and Frankowska, H. (1992), “Unicité des solutions optimales et absence de chocs pour les équations,” C. R. Acad. Sci. Paris, Vol. 315, 427–431.

    MathSciNet  MATH  Google Scholar 

  7. Cannarsa, P. and Soner, H.M. (1987), “On the singularities of the viscosity solutions to Hamilton-Jacobi-Bellman equations,” Indiana University Mathematical Journal, Vol. 36, 501–524.

    MathSciNet  Google Scholar 

  8. Cannarsa, P. and Frankowska, H. (1991), “Some characterizations of optimal trajectories in control theory,” SIAM J. Control and Optimization, Vol. 29, 1322–1347.

    Article  MathSciNet  MATH  Google Scholar 

  9. Carathéodory, C. (1936), Variationsrechnung und Partielle Differential Gleichungen erster Ordnung, Teubner Verlag, Leipzig.

    Google Scholar 

  10. Golubitsky, M. and Guillemin, V. (1973), Stable Mappings and their Singularities, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  11. Kiefer, M. and Schättler, H., “Parametrized families of extremals and singularities in Solutions to Hamilton-Jacobi-Bellman equations,” submitted for publication.

    Google Scholar 

  12. Knobloch, H.W., Isidori, A. and Flockerzi, D. (1993), Topics in Control Theory, DMV Seminar, Band 22, Birkhäuser Verlag, Basel.

    Google Scholar 

  13. Krener, A.J. and Schättler, H. (1989), “The structure of small time reachable sets in low dimension”, SIAM J. Control Optim., Vol. 27, No. 1, 120–147.

    Article  MathSciNet  MATH  Google Scholar 

  14. McShane, E.J. (1944), Integration, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  15. Piccoli, B. (1996), “Classification of generic singularities for the planar time-optimal synthesis,” SIAM J. on Control and Optimization, Vol. 36, 1914–1946.

    Article  MathSciNet  Google Scholar 

  16. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, V.G. and Mishchenko, R.V. (1962), Mathematical Theory of Optimal Processes,Wiley-Interscience.

    Google Scholar 

  17. Poston, T. and Stewart, I.N. (1977), Taylor Expansions and Catastrophes, Research Notes in Mathematics, Vol. 7, Pitman Publishing, London.

    Google Scholar 

  18. Schättler, H. (1982), Hinreichende Bedingungen für ein starkes relatives Minimum bei Kontrollproblemen, Diplomarbeit der Fakultät für Mathematik der Universität Würzburg.

    Google Scholar 

  19. Schättler, H. (1991), “Extremal trajectories, small-time reachable sets and local feedback synthesis: a synopsis of the three-dimensional case,” in Nonlinear Synthesis, Christopher I. Byrnes and Alexander Kurzhansky, eds., Birkhäuser, Boston, 258–269.

    Chapter  Google Scholar 

  20. Schättler, H. and Jankovic, M. (1993), “A synthesis of time-optimal controls in the presence of saturated singular arcs,” Forum Mathematicum, Vol. 5, 203–241.

    MATH  Google Scholar 

  21. Sussmann, H.J. (1990), “Synthesis, presynthesis, sufficient conditions for optimality and subanalytic sets,” in Nonlinear Controllability and Optimal Control, H. Sussmann, ed., Marcel Dekker, New York, 1–19.

    Google Scholar 

  22. Sussmann, H. (1987), “Regular synthesis for time-optimal control of single-input real analytic systems in the plane,” SIAM J. on Control and Optimization, Vol. 25, 1145–1162.

    Article  MathSciNet  Google Scholar 

  23. Whitney, H. (1957), “Elementary structure of real algebraic varieties,” Ann. Math., Vol. 66, 545–556.

    Article  MathSciNet  MATH  Google Scholar 

  24. Young, L.C. (1969), Lectures on the Calculus of Variations and Optimal Control Theory, W.B. Saunders, Philadelphia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kiefer, M., Schättler, H. (1998). Cut-Loci and Cusp Singularities in Parametrized Families of Extremals. In: Optimal Control. Applied Optimization, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6095-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6095-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4796-3

  • Online ISBN: 978-1-4757-6095-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics