Skip to main content

A Shape Optimization Problem for the Heat Equation

  • Chapter
Optimal Control

Part of the book series: Applied Optimization ((APOP,volume 15))

Abstract

In this paper the support of a Radon measure is selected in an optimal way. The solution of the parabolic equation depends on the measure via the mixed type boundary conditions. The existence of a solution for a class of domain optimization problems is shown. We also investigate the behavior of the optimal solution for some time T,when T → ∞ and we prove that it converges to the optimal solution of the stationary problem. The first order necessary optimality conditions are derived.

This research was supported for J.S. by INRIA-Lorraine and the Systems Research Institute of the Polish Academy of Sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams R.A. (1975), Sobolev Spaces, Academic Press, New York.

    MATH  Google Scholar 

  2. Aubin, J.P. (1963), Un Théorème de Compacité, C. R. Acad. Sci., Vol. 256, 5042–5044.

    MathSciNet  MATH  Google Scholar 

  3. Bucur, D. and Zolésio, J.P. (1995),“N—dimensional shape optimization under capacitary constraints,”J. Diff. Eq., Vol. 123–2, 504–522.

    Article  MATH  Google Scholar 

  4. Daniliuk, I.I. (1975), Nonsmooth Boundary Value Problems in the Plane,Nauka, Moscou (in Russian).

    Google Scholar 

  5. Henrot, A., Horn, W. and Sokolowski, J. (1996),“Domain optimization problem for stationary heat equation,”Appl. Math. and Comp. Sci., Vol. 6, No. 2, 1–21.

    Google Scholar 

  6. Hoffmann, K.H. and Sokolowski, J. (1994),“Interface optimization problems for parabolic equations,” Control and Cybernetics, Vol. 23, 445–452.

    MathSciNet  MATH  Google Scholar 

  7. Lions J.L. and Magenes E. (1968), Problèmes aux Limités non Homogènes,Dunod, Paris.

    MATH  Google Scholar 

  8. Sokolowski, J. and Zolésio, J.P. (1992), Introduction to Shape Optimization. Shape Sensitivity Analysis,Springer-Verlag, New York.

    Google Scholar 

  9. Ziemer P.W. (1989), Weakly Differentiable Functions,Springer-Verlag, New York.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Henrot, A., Sokołowski, J. (1998). A Shape Optimization Problem for the Heat Equation. In: Optimal Control. Applied Optimization, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6095-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6095-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4796-3

  • Online ISBN: 978-1-4757-6095-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics