Skip to main content

Neural Networks Controlling Locomotion in Locusts

  • Chapter
Model Neural Networks and Behavior

Abstract

Recently there has been considerable increase in interest in the organization and functioning of nerve cells in the central nervous system of insects. It is now clear that the neural control of many simple behaviors in these animals can be analyzed using modern intracellular recording and staining techniques, and that insects offer attractive preparations for determining the events associated with neuronal development (Chapter 9, this volume). In some large orthopterans (locusts, crickets) and cockroaches, substantial progress has now been made toward understanding the nervous control of flying, jumping, respiration, walking, and predator avoidance (Robertson and Pearson, 1982, 1983; Pearson et al., 1980; Burrows, 1982; Pearson, 1976; Westin and Ritzmann, 1982) and toward elucidating integrative events in auditory and tactile sensory systems (Wohlers and Huber, 1982; Romer et al., 1981; Siegler and Burrows, 1983). Moreover, these animals have provided useful preparations for the analysis of graded transmitter release (Burrows, 1981), the modulatory influences of biogenic amines (Evans and O’Shea, 1978), and the physiological action of neuropeptides (Adams and O’Shea, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M. E., and O’Shea, M., 1983, Peptide cotransmitter at a neuromuscular junction, Science 221:286–289.

    Article  PubMed  CAS  Google Scholar 

  • Bacon, J. P., 1980, An homologous interneurone in a locust, a cricket and mantid, Verh. Dtsch. Zool. Ges. 73:300.

    Google Scholar 

  • Bacon, J. P., and Möhl, B., 1983, The tritocerebral commissure giant (TCG) wind-sensitive interneurone in the locust. I. Its activity in straight flight, J. Comp. Physiol. 150:439–452.

    Article  Google Scholar 

  • Bullock, T. H., 1980, Reassessment of neural connectivity and its specification, in: Information Processing in the Nervous System (H. M. Pinsker and W. D. Willis, Jr., eds.), Raven Press, New York, pp. 199–220.

    Google Scholar 

  • Burrows, M., 1981, Local interneurones in insects, in: Neurones without Impulses (A. Roberts and B. M. H. Bush, eds.), Cambridge University Press, Cambridge, pp. 199–121.

    Google Scholar 

  • Burrows, M., 1982, Interneurones co-ordinating the ventilatory movements of the thoracic spiracles in the locust, J. Exp. Biol 97:385–400.

    Google Scholar 

  • Dickinson, P., 1980, Neuronal control of gills in diverse Aplysia species: Conservative evolution, J. Comp. Physiol. 139:17–23.

    Article  Google Scholar 

  • Evans, P. D., and O’Shea, M., 1978, The identification of an octopaminergic neurone and the modulation of a myogenic rhythm in the locust, J. Exp. Biol. 73:235–260.

    PubMed  CAS  Google Scholar 

  • Getting, P. A., 1983, Mechanisms of pattern generation underlying swimming in Tritonia. II. Network reconstruction, J. Neurophysiol. 49:1017–1035.

    PubMed  CAS  Google Scholar 

  • Hedwig, B., and Pearson, K. G., 1984, Patterns of synaptic input to identified flight motoneurons in the locust, J. Comp. Physiol. 154:745–760.

    Article  Google Scholar 

  • Heitler, W. J., 1974, The locust jump. Specializations of the metathoracic femoral-tibial joint, J. Comp. Physiol. 89:93–104.

    Article  Google Scholar 

  • Heitler, W. J., and Burrows, M., 1977a, The locust jump. I. The motor programme, J. Exp. Biol. 66:203–219.

    PubMed  CAS  Google Scholar 

  • Heitler, W. J., and Burrows, M., 1977b, The locust jump. II. Neural circuits of the motor programme, J. Exp. Biol. 66:221–241.

    PubMed  CAS  Google Scholar 

  • Horsmann, U., 1981, Flugrelevante Afferenzen und ihre Verarbeitung bei Wanderheuschrecke (locusta migratoria L.), Diplomarbeit, Köln.

    Google Scholar 

  • Horsmann, U., Heinzel, H. G., and Wendler, G., 1983, The phasic influence of self-generated air current modulations on the locust flight motor, J. Comp. Physiol. 150:427–438.

    Article  Google Scholar 

  • Hoyle, G. (ed.), 1977, Identified Neurons and Behavior of Arthropods, Plenum Press, New York.

    Google Scholar 

  • King, D. G., and Valentino, K. L., 1983, On neuronal homology: A comparison of similar axons in Musca, Sacrophaga and Drosophila (Diptera: Schizophora), J. Comp. Neurol. 219:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Kukalová-Peck, J., 1983, Origin of the insect wing and wing articulation from the arthropodan leg, Can. J.Zool. 61:1618–1669.

    Article  Google Scholar 

  • Pearson, K. G., 1976, The control of walking, Sci Am. 235(6):72–86.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, K. G., 1983, Neural circuits for jumping in the locusts, J. Physiol. (Paris) 78:765–771.

    CAS  Google Scholar 

  • Pearson, K. G., and Robertson, R. M., 1981, Interneurons coactivating hindleg flexor and extensor motoneurons in the locust, J. Comp. Physiol. 144:391–400.

    Article  Google Scholar 

  • Pearson, K. G., Heitler, W. J., and Steeves, J. D., 1980, Triggering of locust jump by multimodal inhibitory interneurons, J. Neurophysiol. 43:257–278.

    PubMed  CAS  Google Scholar 

  • Pearson, K. G., Reye, D. N., and Robertson, R. M., 1983, Phase-dependent influences of wing stretch receptors on flight rhythm in the locust, J. Neurophysiol. 49:1168–1181.

    PubMed  CAS  Google Scholar 

  • Robertson, R. M., and Pearson, K. G., 1982, A preparation for the intracellular analysis of neuronal activity during flight in the locust, J. Comp. Physiol. 146:311–320.

    Article  Google Scholar 

  • Robertson, R. M., and Pearson, K. G., 1983, Interneurons in the flight system of the locust: Distribution, connections and resetting properties, J. Comp. Neurol. 215:33–50.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, R. M., and Pearson, K. G., 1984, Interneuronal organization in the flight system of the locust, J. Insect Physiol. 30:95–101.

    Article  Google Scholar 

  • Robertson, R. M., and Pearson, K. G., 1985, Neural circuits in the flight system of the locust. J. Neurophysiol. 53:110–128.

    PubMed  CAS  Google Scholar 

  • Robertson, R. M., Pearson, K. G., and Reichert, H., 1982, Flight interneurons in the locust and the origin of insect wings, Science 217:177–179.

    Article  PubMed  CAS  Google Scholar 

  • Romer, H., Rheinlaender, J., and Dronse, R., 1981, Intracellular studies on auditory processing in the metathoracic ganglion of the locust, J. Comp. Physiol. 144:305–312.

    Article  Google Scholar 

  • Siegler, M. V. S., and Burrows, M., 1983, Spiking local interneurons as primary integrators of mechanosensory information in the locust, J. Neurophysiol. 50:1281–1295.

    PubMed  CAS  Google Scholar 

  • Steeves, J. D., and Pearson, K. G., 1982, Proprioceptive gating of inhibitory pathways to hindwing flexor motoneurons in the locust, J. Comp. Physiol. 146:507–515.

    Article  Google Scholar 

  • Weis-Fogh, T., 1956, Biology and physics of locust flight. IV. Notes on sensory mechanisms in locust flight. Philos. Trans. R. Soc. London Ser. B 239:553–584.

    Article  Google Scholar 

  • Wendler, G., 1974, The influence of proprioceptive feedback on locust flight coordination, J. Comp. Physiol. 88:173–200.

    Article  Google Scholar 

  • Wendler, G., 1983a, The interaction of peripheral and central components in insect locomotion, in: Neuroethology and Behavioral Physiology (F. Huber and H. Markl, eds.), Springer-Verlag, Berlin, pp. 42–53.

    Chapter  Google Scholar 

  • Wendler, G., 1983b, The locust flight system: Functional aspects of sensory input and methods of investigation, in: BIONA — Report 2 (W. Nachtigall, ed.), Gustav Fischer, Stuttgart, pp. 113–125.

    Google Scholar 

  • Westin, J., and Ritzmann, R. E., 1982, The effect of single giant interneuron lesions on wind evoked motor responses in the cockroach, Periplaneta americana, J. Neurobiol. 13:127–140.

    Article  CAS  Google Scholar 

  • Wilson, D. M., 1961, The central nervous control of locust flight, J. Exp. Biol. 38:471–490.

    Google Scholar 

  • Wilson, D. M., and Gettrup, E., 1963, A stretch reflex controlling wingbeat frequency in grasshoppers, J. Exp. Biol. 40:171–185.

    Google Scholar 

  • Wilson, D. M., and Weis-Fogh, T., 1962, Patterned activity of co-ordinated motor units studied in flying locusts, J. Exp. Biol. 40:643–667.

    Google Scholar 

  • Wilson, D. M., and Wyman, R. J., 1965, Motor output patterns during random and rhythmic stimulation of locust thoracic ganglia, Biophys. J. 5:121–143.

    Article  PubMed  CAS  Google Scholar 

  • Wohlers, D. W., and Huber, F., 1982, Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L, J. Comp. Physiol. 146:161–174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robertson, R.M., Pearson, K.G. (1985). Neural Networks Controlling Locomotion in Locusts. In: Selverston, A.I. (eds) Model Neural Networks and Behavior. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5858-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5858-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5860-3

  • Online ISBN: 978-1-4757-5858-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics