Skip to main content

Tritonia Swimming

A Model System for Integration within Rhythmic Motor Systems

  • Chapter
Model Neural Networks and Behavior

Abstract

Over the past several decades, the functional organization of motor systems, and in particular those controlling rhythmic movements, has been viewed in the context of two conceptual hypotheses. The observation that many rhythmic motor patterns and behaviors could persist in the absence of phasic sensory feedback led to the idea of a central pattern generator (CPG). The CPG is envisioned as a group of central neurons that generates a sequence of temporally and spatially coordinated activity. It is now clear that most, if not all rhymic behaviors have as their basis a central pattern generator (Delcomyn, 1980). The second major hypothesis has been the concept of the “command” neuron or system. This idea is founded in the work of Wiersma and Ikeda (1964), who observed that stimulation of certain neurons in the crayfish could elicit rhythmic movements of the swimmerets. Despite attempts to define a command neuron by explicit criteria (Kupfermann and Weiss, 1978), the term is most commonly used to describe neurons that, when active, will “turn on” some recognizable, coordinated behavior. The overall organization of rhythmic motor systems can be represented as a series of “black boxes” representing the command and CPG function (Fig. 1) (Grillner, 1977). In this scheme, initiating stimuli would activate an appropriate command neuron or set of command neurons that in turn would activate the central pattern generator for a particular rhythmic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. J., Smith, S. M., and Thompson, S. H., 1980, Ionic currents in molluscan soma, Annu. Rev. Neurosci. 3:141–167.

    Article  PubMed  CAS  Google Scholar 

  • Adams, P. R., Brown, D. A., and Constanti, A., 1982, M-currents and other potassium currents in bullfrog sympathetic neurons, J. Phyiol. (London) 330:537–572.

    CAS  Google Scholar 

  • Brown, D. A., and Adam, P. R., 1979, Muscarinic suppression of a novel voltage-sensitive K-current in a vertebrate neuron, Nature (London) 283:673–676.

    Article  Google Scholar 

  • Byrne, J. H., 1980a, Analysis of ionic conductance mechanisms in motor cells mediating inking behavior in Aplysia californica, J. Neurophysiol. 43:630–650.

    CAS  Google Scholar 

  • Byrne, J. H., 1980b, Quantitative aspect of ionic conductance mechanisms contributing to firing pattern of motor cells mediating inking behavior in Aplysia californica, J. Neurophysiol. 43:651–668.

    PubMed  CAS  Google Scholar 

  • Byrne, J. H., 1980c, Neural circuit for inking behavior in Aplysia californica, J. Neurophysiol. 43:896–911.

    PubMed  CAS  Google Scholar 

  • Connor, J. A., and Stevens, C. F., 1971, Voltage clamp studies of a transient outward current in gastropod neural somata, J. Physiol. (London) 213:21–30.

    CAS  Google Scholar 

  • Davis, W. J., 1976, Organizational concepts in the central motor networks of invertebrates, in: Neural Control of Locomotion (R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart, eds.), Plenum Publishing Corporation, New York, pp. 265–292.

    Google Scholar 

  • Dekin, M. S., and Getting, P.A., 1983, Delayed excitation in neurons of the nucleus tractus solitarius studied in vitro, Neurosci. Abstr. 9:677.

    Google Scholar 

  • Delcomyn, F., 1980, Neural basis of rhythmic behavior in animals, Science 210:492–498.

    Article  PubMed  CAS  Google Scholar 

  • Dorsett, D. A., Willows, A. O. D., and Hoyle, G., 1969, Centrally generated nerve impulse sequences determining swimming behavior in Tritonia, Nature (London) 244:711–712.

    Article  Google Scholar 

  • Dorsett, D. A., Willows, A. O. D., and Hoyle, G., 1973, The neuronal basis of behavior in Tritonia, IV. The central origin of a fixed action pattern demonstrated in the isolated brain, J. Neurobiol. 4:287–300.

    Article  PubMed  CAS  Google Scholar 

  • Getting, P. A., 1977, Neural organization of escape swimming in Tritonia, J. Comp. Physiol. 121:325–342.

    Article  Google Scholar 

  • Getting, P. A., 1981, Mechanisms of pattern generation underlying swimming in Tritonia, I. Neuronal network formed by monosynaptic connections, J. Neuroophysiol. 46:65–79.

    CAS  Google Scholar 

  • Getting, P. A., 1983a, Mechanisms of pattern generation underlying swimming in Tritonia, II. Network reconstruction, J. Neurophysiol. 49:1017–1035.

    PubMed  CAS  Google Scholar 

  • Getting, P. A., 1983b, Mechanisms of pattern generation underlying swimming in Tritonia, III. Intrinsic and synaptic mechanisms for delayed excitation, J. Neurophysiol. 49:1036–1050.

    PubMed  CAS  Google Scholar 

  • Getting, P. A., 1983c, Neural control of swimming in Tritonia, in: Neural Origin of Rhythmic Movements (A. Roberts and B. L. Roberts, eds.), Cambridge University Press, Cambridge, England, pp. 89–128.

    Google Scholar 

  • Getting, P. A., and Dekin, M. S., 1983, Maintenance of Tritonia swimming by reciprocal excitation, Neurosci. Abstr. 9:541.

    Google Scholar 

  • Getting, P. A., and Dekin, M. S., 1985, Mechanisms of pattern generation underlying swimming in Tritonia, IV. Gating of a central pattern generator, J. Neurophysiol. (in press).

    Google Scholar 

  • Getting, P. A., Lennard, P. R., and Hume, R. I., 1980, Central pattern generator mediating swimming in Tritonia, I. Identification and synaptic interations, J. Neurophysiol. 44:151–164.

    PubMed  CAS  Google Scholar 

  • Gillette, R., Kovac, M. P., and Davis, W. J., 1978, Command neurons in Pleurobranchaea receive synaptic feedback from motor network they excite, Science 199:798–801.

    Article  PubMed  CAS  Google Scholar 

  • Grillner, S., 1977, On the neural control of movement—A comparison of different rhythmic behaviors, in: Function and Formation of Neural Systems (G. S. Stent, ed.), Dahlem Konferenzen, Berlin, pp. 197–224.

    Google Scholar 

  • Heitler, W. J., and Mulloney, B., 1978, Crayfish motor neurons are an integral part of the swimmeret central oscillator, Soc. Neurosci. Abstr. 4:381.

    Google Scholar 

  • Hume, R. I., and Getting, P. A., 1982a, Motor organization of Tritonia swimming, II. Synaptic drive to flexion neurons from premotor interneurons, J. Neurophysiol. 47:75–90.

    PubMed  CAS  Google Scholar 

  • Hume, R. I., and Getting, P. A., 1982b, Motor organization of Tritonia swimming, III. Contribution of intrinsic membrane properties to flexion neuron burst formation, J. Neurophysiol. 47:91–102.

    PubMed  CAS  Google Scholar 

  • Hume, R. I., Getting, P. A., and Del Beccaro, M. A., 1982, Motor organization of Tritonia swimming, I. Quantitative analysis of swim behavior and flexion neuron firing patterns, J. Neurophysiol. 47:60–74.

    PubMed  CAS  Google Scholar 

  • Kupfermann, I., and Weiss, K. R., 1978, The command neuron concept, Behav. Brain Sci. 1:3–39.

    Article  Google Scholar 

  • Lennard, P. R., Getting, P. A., and Hume, R. I., 1980, Central pattern generator mediating swimming in Tritonia, II. Initiation, maintenance, and termination, J. Neurophysiol. 44:165–173.

    PubMed  CAS  Google Scholar 

  • Marder, E., and Eisen, J. S., 1984, A mechanism for the production of phase shift in a pattern gener ator, J. Neurophysiol. 51:1375–1393.

    PubMed  Google Scholar 

  • Miller, J. P., and Selverston, A. I., 1982a, Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons, II. Oscillatory properties of pyloric neurons, J. Neurophysiol. 48:1378–1391.

    PubMed  CAS  Google Scholar 

  • Miller, J. P., and Selverston, A. I., 1982b, Mechanisms underlying pattern generation in lobster stomato gastric ganglion as determined by selective inactivation of identified neurons, IV. Network properties of pyloric system, J. Neurophysiol. 48:1416–1432.

    PubMed  CAS  Google Scholar 

  • Nicoll, R. A., 1982, Neurotransmitters can say more than just “yes” or “no,” Trends Neurosci. 5:369–374.

    Article  CAS  Google Scholar 

  • Russell, D. F., and Hartline, D. K., 1978, Bursting neural network: A reexamination, Science 200:453–456.

    Article  PubMed  CAS  Google Scholar 

  • Selverston, A. I., Russell, D. F., Miller, J. P., and King, D. G., 1977, The stomatogastric nervous system: Structure and function of a small neural network, Prog. Neurobiol. 7:215–290.

    Article  Google Scholar 

  • Taghert, P. H., and Willows, A. O. D., 1978, Control of a fixed action pattern by single, central neurons in the marine mollusk, Tritonia diomedea, J. Comp. Physiol. 123:253–259.

    Article  Google Scholar 

  • Weeks, J. C., and Kristan, W. B., Jr., 1978, Initiation, maintenance, and modulation of swimming in the medicinal leech by the activity of a single neurone, J. Exp. Biol. 77:71–88.

    Google Scholar 

  • Wiersma, C. A. G., and Ikeda, K., 1964, Interneurons commanding swimmeret movements in the crayfish, Procambarus clarkii (Girard), Comp. Biochem. Physiol. 12:509–525.

    Article  PubMed  CAS  Google Scholar 

  • Willows, A. O. D., 1967, Behavioral acts elicited by stimulation of single, identifiable brain cells, Science 157:570–574.

    Article  PubMed  CAS  Google Scholar 

  • Willows, A. O. D., and Hoyle, G., 1969, Neuronal network triggering a fixed action pattern, Science 166:1549–1551.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Getting, P.A., Dekin, M.S. (1985). Tritonia Swimming. In: Selverston, A.I. (eds) Model Neural Networks and Behavior. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5858-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5858-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5860-3

  • Online ISBN: 978-1-4757-5858-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics