Skip to main content

Fuzzy Measures

  • Chapter
Fuzzy Measure Theory

Abstract

Let X be a nonempty set, ℰ be a nonempty class of subsets of X, and μ : ℰ → [0, ∞] be a nonnegative, extended real-valued set function defined on ℰ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. M. Sugeno, Theory of fuzzy integrals and its applications, Ph.D. Dissertation, Tokyo Institute of Technology (1974).

    Google Scholar 

  2. Sugeno, M. [1977], Fuzzy measures and fuzzy integrals: A survey. In: Gupta, Saridis, and Gaines [ 1977 ], 89–102.

    Google Scholar 

  3. Wang, Zhenyuan [ 1981 ], Une class de mesures floues-les quasi-mesures. BUSEFAL, 6, 28–37.

    Google Scholar 

  4. Weber, S. [1984], 1-decomposable measures and integrals for Archimedean t-conorms. Journal of Mathematical Analysis and Applications, 101, 114–138.

    Google Scholar 

  5. Banon, G. [ 1981 ], Distinction between several subsets of fuzzy measures. Fuzzy Sets and Systems, 5, 291–305.

    Article  MathSciNet  MATH  Google Scholar 

  6. Lamata, M. T., and Moral, S. [ 1989 ], Classification of fuzzy measures. Fuzzy Sets and Systems, 33, 243–253.

    Article  MathSciNet  MATH  Google Scholar 

  7. Shafer, G.[1976], A Mathematical Theory of Evidence. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  8. Dempster, A. P. [ 1967 ], Upper and lower probabilities induced by multi-valued mapping. Annals of Mathematical Statistics, 38, 325–339.

    Article  MathSciNet  MATH  Google Scholar 

  9. Guan, J. W., and Bell, D. A. [ 1991 ], Evidence and Its Applications (vol. 1 ). North-Holland, New York.

    MATH  Google Scholar 

  10. Walley, P., and Fine, T. L. [ 1979 ], Varieties of model (classificatory) and comparative probability. Synthese, 41, 321–374.

    Article  MathSciNet  MATH  Google Scholar 

  11. Wong, S. K. M., Yao, Y. Y., and Bollmann, P. [ 1992 ], Characterization of comparative belief structures. International Journal of Man-Machine Studies, 37, 123–133.

    Article  Google Scholar 

  12. G. Shafer, Mathematical Theory of Evidence. Princeton, N.J.: Princeton Univ. Press, 1976.

    MATH  Google Scholar 

  13. Qiao, Zhong [ 1990 ], On fuzzy measure and fuzzy integral on fuzzy set. Fuzzy Sets and Systems, 37, 77–92.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, Z., Klir, G.J. (1992). Fuzzy Measures. In: Fuzzy Measure Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5303-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5303-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3225-9

  • Online ISBN: 978-1-4757-5303-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics