Skip to main content

Modern Analytical Techniques for Flavonoid Determination

  • Chapter
Flavonoids in Cell Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 505))

Abstract

The biological functionalities of plant natural products, both in plants and in the animals that use and consume them, is fueling new interest in phytochemical research (Cordell, 1995). A key component of this research is the ability to accurately identify and quantitate specific phytochemicals. Today analytical equipment is available that can rapidly separate, unequivocally identify, and accurately quantify phytochemicals from plant materials literally in a matter of minutes. The development of low-cost, high-powered computer systems allowed for the creation of computer-driven bench top chromatography instrumentation. These systems are able to perform complicated electronic functions, such as control of gas flow and liquid pumps, spectral detection, including optical and mass spectrometry and to accumulate, quantitate, and process large amounts of data. Previously, there may have only been one or two of these types of instruments at an institution. Now they are available at prices in the $20,000 to $200,000 range, which makes them affordable to individual researchers. These developments have made complex plant product analysis extremely practical and affordable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andlauer, W., Martena, M. J., and Furst, P., 1999, Determination of selected phytochemicals by reverse-phase high-performance liquid chromatography combined with ultraviolet and mass spectrometric detection, J. Chromatog. A 849: 341–348.

    Article  CAS  Google Scholar 

  • Arnao, M. B., Casas, J. L., Del Rio, J. A., Acosta, M., and Garcia-Canovas, F., 1990, An enzymatic colorimetric method for measuring naringin using 2,2’-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) in the presence of peroxidase, Anal. Biochem. 185: 335–338.

    Article  CAS  Google Scholar 

  • Aussenac, T., Lacombe, S., and Dayde, J., 1998, Quantification of isoflavones by capillary zone electrophoresis in soybean seeds: effects of variety and environment, Am. J. Clin. Nutr. 68S:1480S–1485S.

    Google Scholar 

  • Barnes, S., Coward, L., Kirk, M., and Sfakianos, J., 1998, HPLC-mass spectrometry analysis of isoflavones, Proc. Soc. Exp. Biol. Med. 217: 254–262.

    CAS  Google Scholar 

  • Barnes, S., Kirk, M., and Coward, L., 1994, lsoflavones and their conjugates in soy foods: extraction conditions and analysis by HPLC-mass spectrometry, J. Agric. Food Chem. 42: 2466–2474.

    Google Scholar 

  • Barnes, S., Wang, C.-C., Smith-Johnson, A., and Kirk, M., 1999, Liquid chromatography: mass spectrometry of isoflavones, J. Medicinal Food 2: 1 11–117.

    Article  Google Scholar 

  • Berhow, M. A., and Vaughn, S. F., 1999, Higher plant tlavonoids: biosynthesis and chemical ecology, In: Principles and Practices in Plant Ecology: Allelochemical Interactions. lnderj it, Dakshini, K. M. M., and Foy, C., eds., CRC Press, Boca Raton, FL, pp. 423–438.

    Google Scholar 

  • Bocchini, P., Russo, M., and Galletti, G. C., 1998, Pyrolysis-gas chromatography/mass spectrometry used as a microanalytical technique for the characterization of Origanum heracleoticum from Calabria, southern Italy, Rapid Commun. Mass Spectrom. 12: 1555–1563.

    Article  CAS  Google Scholar 

  • Cancalon, P. F., 1999, Analytical monitoring of citrus juices by using capillary electrophoresis, J.AOAC Int. 82: 95–106.

    CAS  Google Scholar 

  • Careri, M., Elviri, L., and Mangia, A.,1999, Validation ofa liquid chromatography ion spray mass spectrometry method for the analysis of flavanones, flavones and flavonols, Rapid Commun. Mass Spec trom. 13: 2399–2405.

    Google Scholar 

  • Careri, M.. Mangia, A., and Musci, M., 1998, Overview of the applications of liquid chromatography-mass spectrometry interfacing systems in food analysis: naturally occurring substances in food, J. Chromatog. A 794: 263–297.

    Article  CAS  Google Scholar 

  • Colegate, S. M., and Molyneux, R. J., 1993, Bioaclive Natural Products: Detection, Isolation, and Structural Determination, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Cordell, G. A., 1995, Changing strategies in natural products chemistry, Phytochem. 40: 1585–1612.

    Article  CAS  Google Scholar 

  • Coward, L., Smith, M., Kirk, M., and Barnes, S., 1998, Chemical modification of isoflavones in soyfoods during cooking and processing, Ani. J. Clin. Nutr. 68S:1486S–1491S.

    Google Scholar 

  • Creaser, C. S., Koupai-Abyazani, M. R., and Stephenson, G. R., 1992, Gas chromatographic-mass spectromic characterization of flavanones in citrus and grape juices, Analyst 117: 1105–1109.

    Article  CAS  Google Scholar 

  • Dakora, F. D., 1995, Plant flavonoids: biological molecules for useful exploitation, Austral. J. Plant Physiol. 22: 87–99.

    Article  CAS  Google Scholar 

  • Davis, W. B., 1947, Determination of flavanones in citrus fruits, Anal. Chem. 19: 467–478.

    Google Scholar 

  • Deng, H., and Van Berkel, G. J., 1998, Electrospray mass spectrometry and UVNisible spectrophotometry studies of aluminum(III)-flavonoid complexes, J. Mass Spectrom. 33: 1080–1087.

    Google Scholar 

  • Dixon, R. A., 1999, lsoflavonoids: biochemistry, molecular biology. and biological functions, In: Comprehensive Natural Products Chemistry, Sankawa, U., ed., Elsevier, New York, NY, pp. 773–823.

    Google Scholar 

  • Dixon, R. A., and Paiva, N. L., 1995, Stress-induced phenylpropanoid metabolism, Plant Cell 7: 1085–1097.

    CAS  Google Scholar 

  • Garcia, M. C., Torre, M., Marina, M. L., and Laborda, F., 1997, Composition and characterization of soyabean and related products, Crit. Rev. Food Sci. Nutr. 34: 361–391.

    Article  Google Scholar 

  • Gengross, O., and Renda, N., 1966, Occurrence and quantitative estimation of naringin in citrus juices, Justus Liebigs Ann. Chem. 691: 186–189.

    Article  Google Scholar 

  • Hahlbrock, K., and Scheel, D., 1989, Physiology and biochemistry of phenylpropanoid metabolism, Ann Rev Plant Physiol. Plant Mol Biol. 40: 347–369.

    Article  CAS  Google Scholar 

  • Harbome, J. B., Mabry, T. J., and Mabry, H., eds., 1975, The Flavonoids,Chapman & Hall, New York, NY and London, UK.

    Google Scholar 

  • Harbome, J. B., and Mabry, T. J., eds., 1982, The Flavonoids: Advances in Research, Chapman & Hall, New York, NY and London, UK.

    Google Scholar 

  • Harbome, J. B., ed., 1988, The Flavonoids: Advances in Research since 1980, Chapman & Hall, New York, NY and London, UK.

    Google Scholar 

  • Harbome, J. B., ed., 1994, The Flavonoids: Advances in Research since 1986, Chapman & Hall, New York, NY and London, UK.

    Google Scholar 

  • Hasegawa, S., Berhow, M. A., and Fong, C. H., 1995, Analysis of bitter principles in Citrus, In: Modern Methods of Plant Analysis, Volume 18: Fruit Analysis, Linskens, H.F. and Jackson J. F., eds., Springer Verlag, Berlin; Heidelberg, pp. 59–80.

    Google Scholar 

  • Heinonen, S., Wahala, K., and Adlercreutz, H., 1999, Identification of isoflavone metabolites dihydrodaidzein, dihydrogenistein, 6-OH-O-DMA, and cis-4-OH-equol in human urine by gas chromatography-mass spectroscopy using authentic reference compounds, Anal. Biochem. 274: 211–9.

    Article  CAS  Google Scholar 

  • Heller, W., and Forkmann, G., 1994, Biosynthesis of flavonoids, in: The Flavonoids, Harbome, J. B., ed., Chapman & Hall, New York, NY, USA, pp. 499–536.

    Google Scholar 

  • Hendrickson, R., Kesterson, J. W., and Edwards, G. J., 1958, Ultraviolet absorption technique to determine the naringin content of grapefruit, Proc. Fla. State Hort. Soc. 71: 194–198.

    CAS  Google Scholar 

  • Horowitz, R. M., 1957, Detection of flavanones by reduction with sodium borohydride J.Org Chem. 22: 1733–1734.

    Article  CAS  Google Scholar 

  • Jourdan, P. S., Mansell, R. L., Oliver, D. G., and Weiler, E. W., 1984, Competitive solid phase enzyme-linked immunoassay for the quantification of limonin in citrus, Anal. Biochem. 138: 19–24.

    Article  CAS  Google Scholar 

  • Jourdan, P.S., Mansell, R. L., and Weiler, E. W., 1982, Radioimmunoassay for the citrus bitter principle, naringin, and related flavonoid-7-O-neohesperidosides, J. Medicinal Plant Res. 44: 82–86.

    Article  CAS  Google Scholar 

  • Jourdan, P. S., McIntosh, C. A., and Mansell, R. L., 1985a, Naringin levels in citrus tissues. Il. Quantitative distribution of naringin in Citrus paradisi Macfad., Plant Physiol. 77: 903–908.

    Article  CAS  Google Scholar 

  • Jourdan, P. S., Weiler, E. W., and Mansell, R. L., 19856, Naringin levels in citrus tissues. I. Comparison of different antibodies and tracers for the radioimmunoassay of naringin, Plant Physiol. 77: 896–902.

    Google Scholar 

  • Junghuth, G., and Ternes, W., 2000, HPLC separation of flavanols, flavones and oxidized tlavanols with UV-, DAD-, electrochemical and ESL-ion trap MS detection, Fresenius J. Anal. Chem. 367: 661–666.

    Article  Google Scholar 

  • Kirchner, J. G., ed., 1978, Thin-Layer Chromatography, Second Edition, Techniques of Chemistry Series Vol. XIV, John Wiley & Sons, New York, NY.

    Google Scholar 

  • Kohen, F., Lichter, S., Gayer, B., DeBoever, J., and Lu, L.. J., 1998, The measurement of the isoflavone daidzein by time resolved fluorescent immunoassay: a method for assessment of dietary soya exposure, J. Steroid Biochem. Mol Biol. 64: 217–222.

    Article  CAS  Google Scholar 

  • Kudou, S., Fleury, Y., Wetli, D., Magnolato, D., Uchida, T., Kitamura, K. and Okubo, K., 1991, Malonyl isoflavone glycosides in soybean (Glycine max Merrill) Agric. Biot. Chem. 55:2227–2233.

    Google Scholar 

  • Kwierty, A., and Braverman, J. B., 1959, Critical evaluation of the cyanidin reaction for flavonoid compounds, Bull. Res. Council Israel Sect. C 7: 187–196.

    Google Scholar 

  • Lin, L.-Z., He, X.-G., Lindenmaier, M., Yang, J., Cleary, M., Qiu, S.-X., and Cordell, G. A., 2000, LC-ESI-MS study of the flavonoid glycoside malonates of red clover (Trifolium pratense). J. Agric. Food Chem. 48: 354–365.

    CAS  Google Scholar 

  • Luthria, D. L., Jones, A. D., Donovan, J. L., and Waterhouse, A. L., 1998, GC-MS determination ofcatechin and epicatechin levels in human plasma, Book of Abstracts, 215th ACS National Meeting, Dallas, March 29–April 2, 1998. AGFD 008.

    Google Scholar 

  • Mabry, T. J., Markham, K. R., and Thomas, M. B., 1970, The Systematic Identification of Faavonoids, Springer Verlag, New York, NY.

    Book  Google Scholar 

  • Mann, J., R. Davidson, S., Hobbs, J. B., Banthorpe, D. V., and Harborne, J. B., 1994, Natural Products: Their Chemistry and Significance, Addison Wesley Longmann Ltd., Edinburgh Gate, Harlow.

    Google Scholar 

  • Matsumoto, R. and Okudai, N., 1991, Early evaluation of citrus bitter component, flavanone neohesperidosides by enzyme immunoassay using anti-naringin antibody, J. Japanese Soc. Horticult. Sci. 60: 191–200.

    Article  CAS  Google Scholar 

  • Messina M. J., 1999, Legumes and soybeans: overview of their nutritional profiles and health effects, Am. J. Clin. Nutr. 70S: 439S–450S.

    Google Scholar 

  • Novotny, L., Vachalkova, A., Al-Nakib, T., Mohanna, N., Vesela, D., and Suchy, V., 1999, Separation of structurally related flavonoids by GC/MS technique and determination of their polarographic parameters and potential carcinogenicity, Neoplasma 46: 231–236.

    CAS  Google Scholar 

  • Pietta, P. G., Mauri, P. L., Rava, A., and Sabbatini, G., 1991, Application of micellar electrokinetic capillary chromatography to the determination of flavonoid drugs, J. Chromatog. A 549: 367–373.

    Article  CAS  Google Scholar 

  • Runkel, M., Muehlau, A., Duecker, D., Tegtmeier, M., and Legrum, W., 1998, Capillary electrophoresis (CE): An efficient tool for the quality control of fruits as shown for the constituents ofgrapefruit, Fruit Process. 8: 102–104.

    CAS  Google Scholar 

  • Seigler, D. S.. 1981, Secondary metabolites and plant systematics, In: Secondary Plant Products, Stumpf, P. K., and Conn, E. E., eds., Academic Press. New York, pp. 139–175.

    Google Scholar 

  • Seitz, U., Oefner, P. J., Nathakarnkitkool, S., Popp, A., and Bonn, G. K., 1992, Capillary electrophoretic analysis of flavonoids, Electrophoresis 13: 35–38.

    Article  CAS  Google Scholar 

  • Shelnutt, S. R., Cimino, C. O., Wiggins, P. A., and Badger, T. M., 2000. Urinary pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein, Cancer Epidemiol. Biomarkers Prey. 9: 413–419.

    CAS  Google Scholar 

  • Shihabi, Z. K., Kute, T., Garcia, L. L., and Hinsdale, M.,1994, Analysis of isoflavones by capillary electrophoresis. J. Chromatog. A 680: 181–185.

    Google Scholar 

  • Song, T., Barua, K., Buseman, G., and Murphy, P. A., 1998, Soy isoflavone analysis: quality control and a new internal standard, Am. J. Gin. Num. 68S: 1474S–1479S.

    CAS  Google Scholar 

  • Stobiecki, M., 2000, Application of mass spectrometry for identification and structural studies of flavonoid glycosides. Phytochem. 54: 237–256.

    Article  CAS  Google Scholar 

  • Stobiecki, M., Malosse, C., Kerhoas, L., Wojlaszek, P., and Einhorn, J., 1999, Detection of isoflavonoids and their glycosides by liquid chromatography/electrospray ionization mass spectrometry in root extracts of lupin (Lupinus albus), Phytochem. Anal. 10: 198–207.

    Article  CAS  Google Scholar 

  • Swantsitang, P., Tucker, G., Robards, K., and Jardine, D.. 2000, Isolation and identification of phenolic compounds in Citrus sinensis, Anal. Chini Acta 417: 231–240.

    Article  Google Scholar 

  • Tsukamoto, C., Shimada, S., Igata, K., Kudou, S., Kokubun, M., Okubo, K., and Kitamura, K., 1995, Factors affecting isoflavone content in soybean seeds: changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development, J. Agric. Food Chem. 43: 1184–1192.

    Article  CAS  Google Scholar 

  • Voirin, B., Sportouch, M., Raymond, O., Jay, M., Bayet, C., Dangles, O., and El Hajji, H., 2000, Separation offlavone C-glycosides and qualitative analysis of Pass fora incarnata L. by capillary zone electrophoresis, Phytochem. Anal. 11: 90–98.

    Article  CAS  Google Scholar 

  • Wang, C. Y., Ma, Q., Pagadala, S., Sherrard, M. S., and Krishnan, P. G., 1998, Changes of isoflavones during processing of soy protein isolates, J. Amer Oil Chem. Soc. 75: 337–342.

    Article  CAS  Google Scholar 

  • Wang, C. Y., Sherrard, M., Pagadala, S., Wixon, R., and Scott, R. A., 2000, Isoflavone content among maturity group 0 to 11 soybeans, J. Amer Oil Chem. Soc. 77: 483–487.

    Article  CAS  Google Scholar 

  • Wang, H., and Murphy, P. A., 1994, Isoflavone content in commercial soybean foods, J. Agric. Food Chem. 42: 1666–1673.

    Article  CAS  Google Scholar 

  • Wang, H. J., and Murphy, P. A., 1996, Mass balance study of isoflavones during soybean processing, J. Agric. Food Chem. 44: 2377–2383.

    Article  CAS  Google Scholar 

  • Watson, D. G., and Pitt, A. R., 1998, Analysis of flavonoids in tablets and urine by gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry, Rapid Commun. Mass Spectrom. 12: 153–156.

    Article  CAS  Google Scholar 

  • Wolfender, J. L., Rodriguez, S.. Hostettmann, K., and Wagner-Redecker, W., 1995, Comparison of liquid chromatography/electrospray, atmospheric pressure chemical ionization, thermospray and continous flow fast atom bombardment mass spectrometry for the determination of secondary metabolites in crude plant extracts, J. Mass Spectrom. and Rapid Commun. Mass Spectrom. Special: S35–S46.

    Google Scholar 

  • Zhou, S,. and Hamberger, M., 1996, Application of liquid chromatography atmospheric pressure ionization mass spectrometry in natural products analysis: Evaluation and optimization of electrospray and heated nebulizer interfaces, J. Chromatog. A 755: 189–204.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berhow, M.A. (2002). Modern Analytical Techniques for Flavonoid Determination. In: Buslig, B.S., Manthey, J.A. (eds) Flavonoids in Cell Function. Advances in Experimental Medicine and Biology, vol 505. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5235-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5235-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3383-6

  • Online ISBN: 978-1-4757-5235-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics