Skip to main content

Electrochemical Aspects of Hydrogen in Metals

  • Chapter
Electrochemical Materials Science

Part of the book series: Comprehensive Treatise of Electrochemistry ((AN,volume 4))

Abstract

The deleterious effect that hydrogen produces in metals, known popularly as hydrogen embrittlement, has been the root cause of innumerable investigations.(1–6) The hydrogen that produces embrittlement usually is of electrochemical origin such as corrosion, pickling, electrodeposition, photoelectrolysis (occurring on oxide films of Fe2O3, TiO2, etc.(7–8)) and so on. Involvement of electrochemistry in the study of H in metals is a natural consequence of the origin of the damaging hydrogen. Furthermore, the electrochemical technique of measuring hydrogen permeation developed by Devanatham and Bockris(9–13) is a very convenient and rigorous method for studying fundamental properties such as the diffusion coefficient, solubility, partial molar volume (pmv), heat of solution, etc., of H in metals in the temperature range of aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. W. Buzzard and H. E. Cleaves, Hydrogen Embrittlement of Steel (review of literature), National Bureau of Standards Circular 511, Washington, D.C. (1951).

    Google Scholar 

  2. D. P. Smith, Hydrogen in Metals, Chicago University Press, Chicago (1948).

    Google Scholar 

  3. M. Smialowski, Hydrogen in Steel, Addison-Wesley, Reading, Massachusetts (1962).

    Google Scholar 

  4. J. L. Carpenter, Jr. and W. F. Stuhrke, Hydrogen Embrittlement of Structural Alloys-A Technology Survey, NASA-CR-134962, U.S. Dept. of Commerce, NTIS (1976).

    Google Scholar 

  5. American Society for Metals, Hydrogen in Metals, Proceedings of an International Symposium, September, 1973.

    Google Scholar 

  6. American Society for Metals, Hydrogen Damage, C. D. Beachem, ed., ASTM, Metals Park, Ohio (1977).

    Google Scholar 

  7. J. G. Mavroides, D. I. Tchernev, J. A. Kafalas, and D. F. Kolesar, Mat. Res. Bull. 10, 1023 (1975).

    Article  CAS  Google Scholar 

  8. J. F. Juliao, F. Decker, and M. Abramovitch, J. Electrochem. Soc. 127, 2264 (1980).

    Article  Google Scholar 

  9. K. L. Hardee and A. J. Bard, J. Electrochem. Soc. 123, 1024 (1976).

    Article  CAS  Google Scholar 

  10. J. H. Kennedy, R. Shinar, and J. P. Ziegler, J. Electrochem. Soc. 127, 2307 (1980).

    Article  Google Scholar 

  11. J. O’M. Bockris and M. A. V. Devanathan, ONR Technical Reports 551 (22), 1957.

    Google Scholar 

  12. M. A. V. Devanathan and Z. Stachurski, Proc. R. Soc. London 270A, 90 (1962).

    Article  CAS  Google Scholar 

  13. M. A. V. Devanathan, Z. Stachurski, and W. Beck, J. Electrochem. Soc. 110, 886 (1963).

    Article  CAS  Google Scholar 

  14. M. A. V. Devanathan and Z. Stachurski, J. Electrochem. Soc. 111, 619 (1964).

    Article  CAS  Google Scholar 

  15. W. Beck, J. O’M. Bockris, J. McBreen, and L. Namis, Proc. R. Soc. London 290A, 220 (1965).

    Google Scholar 

  16. L. Cailetet, Compt. Rend. 58, 327 (1864).

    Google Scholar 

  17. W. H. Johnson, Proc. R. Soc. London 23 (1875).

    Google Scholar 

  18. J. O’M. Bockris, Energy: The Solar Hydrogen Alternative, Halsted Press, New York (1975).

    Google Scholar 

  19. J. O’M. Bockris, Lectures in Electrochemistry, University of Pennsylvania, Fall, 1965.

    Google Scholar 

  20. R. C. Frank, D. E. Swets, and D. L. Fry, J. Appl. Phys. 20 (1958).

    Google Scholar 

  21. R. Frauenfelder, J. Chem. Phys. 48, 3955 (1968).

    Article  CAS  Google Scholar 

  22. R. Gibala, Trans. Met. Soc. AIME 239, 1574 (1967).

    CAS  Google Scholar 

  23. J. A. Peterson, R. Gibala, and A. R. Troiano, J. Iron Steel Inst. 207, 86 (1969).

    Google Scholar 

  24. K. Skold and G. Nelin, Phys. Chem. Solids 28, 2369 (1967).

    Article  CAS  Google Scholar 

  25. W. Gissien, G. Alefold, and T. Springer, J. Phys. Chem. Solids 31, 2361 (1970).

    Article  Google Scholar 

  26. G. M. Padawer and P. N. Adler, Development of a nuclear microprobe technique for hydrogen analysis in selected materials, U.S. Nat. Tech. Inf. Serv., A. D. Report No. 770856/35A (1973).

    Google Scholar 

  27. R. Gauthier and P. Pinard, Phys. Status Solidi A 38, 85 (1976).

    Article  CAS  Google Scholar 

  28. A. Benninghove, K. H. Muller, C. Plog, M. S. Chamer, and P. Steffens, Surf. Sci. 63, 403 (1977).

    Article  Google Scholar 

  29. T. K. G. Namboodhiri and L. Nanis, Hydrogen permeation and embrittlement in ferrous materials, Office of Naval Research, Technical Report, UPH2–004, (November 1972), NR036–077.

    Google Scholar 

  30. J. J. Deluccia, Electrolytic hydrogen in beta titanium, U.S. NTIS.AD. Rep. AD-A028496 (1976).

    Google Scholar 

  31. M. G. Fontana and R. W. Staehle, Stress corrosion cracking of metallic materials. Part III-Hydrogen entry and embrittlement in steel, NTIS No. AD/A-010 265, National Technical Information Service, 5285 (1975).

    Google Scholar 

  32. M. R. Piggott and A. C. Siarkowski, J. Iron Steel Inst., 901 (1972).

    Google Scholar 

  33. N. V. Parthasarathy, Met. Finish. J. 36 (1974).

    Google Scholar 

  34. J. P. Nityanandan, H. V. K. Uduppa, H. N. V. Rao, Y. Mahadevan, and K. R. Ramakrishnan, Met. Finish. J. 190 (1974).

    Google Scholar 

  35. Y. Saito and K. Nobe, Abstract No. 126, in Extended Abstracts of the Fall Meeting, Electrochemical Society, Atlanta, October, 1977.

    Google Scholar 

  36. Materials Science Research Programs, M.I.T. Research Programs for 1980. R. Kirchheim and R. B. M.Lellan, J. Electrochem. Soc. 127, 2419 (1980). P. Kedzierzawski„ Z. SzklarskaSmiabowska, and M. Smialowski, J. Electrochem. Soc. 127, 2550 (1980).

    Google Scholar 

  37. J. McBreen, L. Nanis, and W. Beck, J. Electrochem. Soc. 113, 1218 (1966).

    Article  Google Scholar 

  38. E. Gileadi, M. Fullenwider, and J. O’M. Bockris, J. Electrochem. Soc. 113, 928 (1966).

    Google Scholar 

  39. J. O’M. Bockris, W. Beck, M. A. Genshaw, P. K. Subramanyan, and F. S. Williams, Acta Metall. 19, 1209 (1971).

    Article  Google Scholar 

  40. L. Nanis and T. R. G. Namboodhiri, J. Electrochem. Soc. 119, 691 (1972).

    Article  CAS  Google Scholar 

  41. J. Deluccia, Electrolytic hydrogen in beta titanium, U.S. NTIS AD Rep. AD-A028496 (1976).

    Google Scholar 

  42. T. K. G. Namboodhiri and L. Nanis, Hydrogen permeation and embrittlement in ferrous materials, Technical Report, UPD2–004, NR 036–077 (November 1972).

    Google Scholar 

  43. C. D. Kim and B. E. Wilde, J. Electrochem. Soc. 118, 202 (1971).

    Article  CAS  Google Scholar 

  44. T. C. Franklin and A. W. Beyerlein, Denki Kagaku 41, 186 (1973).

    CAS  Google Scholar 

  45. B. Baranowski, S. Majchrzak, and T. B. Flanagan, J. Phys. F. Metal Phys. 1 258 (1971).

    Article  CAS  Google Scholar 

  46. M. Kuballa and B. Baranowski, Ber. Bunsen. Gesellsch. Phys. Chem. 78, 335 (1974).

    CAS  Google Scholar 

  47. J. McBreen, Ph.D., thesis, University of Pennsylvania, 1965.

    Google Scholar 

  48. J. O’M. Bockris and P. K. Subramanyan, Electrochem. Acta 16, 2169 (1971).

    Article  Google Scholar 

  49. W. H. Trapnal, Chemisorption, Butterworths, London (1955).

    Google Scholar 

  50. H. Podgurski, private communication.

    Google Scholar 

  51. C. E. Holley, W. J. Worlton, and R. R. Ziegler, U.S.A.E.C. Report, LA-2271 (August 1958).

    Google Scholar 

  52. M. Smialowski, in Proceedings of the First International Symposium on Corrosion, held at Ohio State University, Columbus, Ohio, 1967.

    Google Scholar 

  53. J. O’M. Bockris, J. McBreen, and L. Nanis, J. Electrochem. Soc. 112, 1125 (1965).

    Google Scholar 

  54. J. McBreen and M. A. Genshaw, in Proceedings of the First International Symposium on Corrosion, held at Ohio State University, Columbus, Ohio, 1967.

    Google Scholar 

  55. B. V. Tilak and B. E. Conway, Electrochem. Acta 21, 745 (1976).

    Article  CAS  Google Scholar 

  56. B. V. Tilak, C. G. Rader, and B. E. Conway, Electrochem. Acta 22, 1167 (1977).

    Article  CAS  Google Scholar 

  57. J. O’M. Bockris, Modern Aspects of Electrochemistry, Vol. 1, Butterworths, London (1954), p. 180.

    Google Scholar 

  58. D. B. Matthews, Ph.D. thesis, University of Pennsylvania, 1965.

    Google Scholar 

  59. T. P. Radhakrishnan and L. L. Shreir, Electrochem. Acta 11, 1007 (1966).

    Article  CAS  Google Scholar 

  60. M. Smialowski and Z. Sklarska-Smialowska, Bull. Acad. Pol. Sci. Cl., 111, 2, 73 (1954).

    Google Scholar 

  61. W. Baukloh and G. Zimmerman, Arch. Eisenhutten Wis. 9, 459 (1936).

    Google Scholar 

  62. V. V. Kuznetzov and V. V. Frolov, Zh. Prikl. Rhim. Mosk. 35, 582 (1962).

    Google Scholar 

  63. P. Bardenheur and H. Ploum, Mitt. Kelmwilh-Inst. Eisenforsch. Dusseld. 16, 129 (1934).

    Google Scholar 

  64. J. F. Newman and L. L. Shreir, Corros. Sci. 9, 631 (1969).

    Article  CAS  Google Scholar 

  65. K. E. Shuler and K. J. Laidler, J. Chem. Phys. 17, 212 (1949).

    Article  Google Scholar 

  66. S. M. Beloglazov and M. I. Polukarov, Zh. Prikl. Chim. Mosk. 33, 389 (1960).

    Google Scholar 

  67. V. P. Alikin, Uchen. Zap. Perm. Gos. Univ. 19, 3 (1961).

    CAS  Google Scholar 

  68. U. R. Evans, The corrosion and oxidation of metals, in Scientific Principles and Practical Applications, Arnold, London (1961), p. 397.

    Google Scholar 

  69. J. O’M. Bockris and R. Thacker, Technical Report No. 3, Office of Naval Research Contract No. NR 551 (22) NRO 36–028 (1958).

    Google Scholar 

  70. L. Nanis and J. J. Deluccia, Materials performance and the deep sea, ASTM STP 445, Am. Soc. Testing Materials, (1969), p. 155.

    Google Scholar 

  71. J. J. Deluccia, K. Yamakawa, and L. Nanis, Technical Report, UP H 2–001, NR 036–077 (October 1969).

    Google Scholar 

  72. F. de Kazinczy, JernkontAnnlv. 139, 885 (1955).

    CAS  Google Scholar 

  73. J. C. M. Li, R. A. Oriani, and L. S. Darken, Z. Phys. Chem. N.F. 49, 926 (1968).

    Google Scholar 

  74. J. W. Gibbs, The Collected Works, Vol. 1, Yale University Press, Hew Haven, Connecticut (1948).

    Google Scholar 

  75. J. O’M. Bockris and P. K. Subramanyan, Acta Metall. 19, 1205 (1971).

    Article  Google Scholar 

  76. J. O’M. Bockris and P. K. Subramanyan, Scripta Met. 6, 947 (1972).

    Article  Google Scholar 

  77. P. K. Subramanyan, in MTP International Review of Science, Vol. 6, J. O’M. Bockris, ed., Butterworths, London (1973), Chap. 4, p. 181.

    Google Scholar 

  78. W. A. Tiller and R. Schrieffer, Scripta Met. 4, 57 (1970).

    Article  CAS  Google Scholar 

  79. W. A. Tiller, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, R. Staehle, ed., NACE, Houston (1974).

    Google Scholar 

  80. W. A. Tiller, Scripta Mat. 8, 487 (1974).

    Article  CAS  Google Scholar 

  81. P.K. Subramanyan, Electrochim. Acta to be published.

    Google Scholar 

  82. H. G. Van Bueren, Imperfections in Crystals, North-Holland, Amsterdam (1961).

    Google Scholar 

  83. A. R. Troiano, Trans. ASM. 47, 892 (1955).

    Google Scholar 

  84. J. A. Peterson, R. Gibala, and A. R. Troiano, J. Iron Steel Inst. 207, 86 (1969).

    CAS  Google Scholar 

  85. P. Cotterril, Prog. Met. Sci. 9, 205 (1961).

    Article  Google Scholar 

  86. A. S. Tetelman and A. J. McEvily, Jr., Fracture of Structural Materials, John Wiley and Sons, New York (1970).

    Google Scholar 

  87. H. C. Rogers, Science 159, 1057 (1968).

    Article  Google Scholar 

  88. I. M. Bernstein, Mater. Sci. Eng. 6, 1 (1970).

    Article  Google Scholar 

  89. J. P. Hirsh and H. H. Johnson, Corrosion (Houston) 32, 3 (1976).

    Google Scholar 

  90. A. W. Thompson, Int. J. Hydrogen Energy 2, 299 (1977).

    Article  Google Scholar 

  91. H. Benneck, H. Schenck, and H. Muller, Stahl Eisen 55, 321 (1935).

    Google Scholar 

  92. A. A. Griffith, Philos. Trans. A221, 163 (1920–1921); Proc. Int. Congr. Appl. Mech. Delft, 55 (1924).

    Google Scholar 

  93. I. N. Sneddon, Proc. R. Soc. 187, 229 (1945).

    Google Scholar 

  94. F. de Kazinczy, J. Iron Steel Inst. 177, 85 (1954).

    CAS  Google Scholar 

  95. F. Garafalo, Y. T. Chotu, and V. Ambegaokar, Acta. Metall. 8, 504 (1960).

    Article  Google Scholar 

  96. B. A. Bilby and J. Hewitt, Acta Metall. 10, 587 (1962).

    Article  CAS  Google Scholar 

  97. F. Kamel and A. G. Quarrel, J. Iron Steel Inst. 187, 1002 (1965); K. Farrel, J. Iron Steel Inst. 188, 457 (1965).

    Google Scholar 

  98. J. O’M. Bockris, M. A. Gershaw, and M. A. Fullenwider, Electrochem. Acta 15, 47 (1970).

    Google Scholar 

  99. J. O’M. Bockris and P. K. Subramanyan, J. Electrochem. Soc. 118, 1114 (1971).

    Article  Google Scholar 

  100. E. Gileadi, M. A. Fullenwider, and J. O’M. Bockris, J. Electrochem. Soc. 113, 926 (1966).

    Article  CAS  Google Scholar 

  101. N. J. Petch and P. Stables, Nature (London) 169, 842 (1952).

    Article  Google Scholar 

  102. N. J. Petch, Philos. Mag. 1, 186 (1956); 1, 331 (1956); 3, 1089 (1958).

    Google Scholar 

  103. E. Orowan, Nature (London) 154, 341 (1944).

    Article  Google Scholar 

  104. G. G. Hancock and H. H. Johnson, Trans. A.I.M.E. 236, 513 (1966).

    CAS  Google Scholar 

  105. M. G. Fontana and N. D. Greene, Corrosion Engineering, McGraw-Hill, New York (1967).

    Google Scholar 

  106. Y. A. Marichev and I. L. Rosenfeld, Corrosion (Houston) 32, 423 (1976).

    Article  CAS  Google Scholar 

  107. J. H. N. Van Vucht, F. A. Kujpers, and H. C. A. M. Burming, Philips Res. Rep. 25, 133 (1970).

    Google Scholar 

  108. A. Biris, R. V. Bucur, P. Ghete, E. Indrea, and D. Lupu, J. Less Common Met. 49, 477 (1976).

    Article  CAS  Google Scholar 

  109. O. Boser, J. Less Common Met. 46, 9 (1976).

    Article  Google Scholar 

  110. H. H. Van Mal, K. H. J. Buschow, and A. R. Meidema, J. Less Common Met. 49, 473 (1976).

    Article  Google Scholar 

  111. A. R. Meidema, K. H. J. Buschow, and H. H. Van Mal, J. Less Common Met. 49, 463 (1976).

    Article  Google Scholar 

  112. W. Beck, J. O’M. Bockris, M. A. Genshaw, and P. K. Subramanyan, Met. Trans. 2, 883 (1971).

    Article  Google Scholar 

  113. P. K. Subramanyan, Ph.D. thesis, Hydrogen in ferrous metals and alloys, University of Pennsylvania, Philadelphia, 1970.

    Google Scholar 

  114. R. H. Wiswall, Jr. and J. J. Reilly, in Proceedings of the 7th Intersociety Energy Conversion Engineering Conference, San Diego, September, 1972, American Chemical Society, Washington, D.C. (1973), p. 1342.

    Google Scholar 

  115. K. C. Hoffman, J. J. Reilly, F. J. Solzano, C. H. Waide, R. H. Wiswall, and W. E. Winsche, Int. J. Hydrogen Energy, 1, 133 (1976).

    Article  CAS  Google Scholar 

  116. M. A. Pick and H. Wenzl, Int. J. Hydrogen Energy 1, 413 (1976).

    Article  Google Scholar 

  117. A. H. Beaufrere, F. J. Salzano, R. J. Isler, and W. S. Yu, Int. J Hydrogen Energy 1, 307 (1976).

    Article  CAS  Google Scholar 

  118. G. Bronoel, J. Sarradin, M. Bonnemay, A. Pecheron, J. C. Achard, and L. Schlapbach, Int. J. Hydrogen Energy 1, 251 (1976).

    Article  CAS  Google Scholar 

  119. W. C. Gough, in The Chemistry of Fusion Technology,D. M. Gruen, ed., Plenum Press, New York (1972), Chap. 1.

    Google Scholar 

  120. J. D. Lee, in The Chemistry of Fusion Technology, D. M. Gruen, ed., Plenum Press, New York (1972), Chap. 2. T. Kammash, Fusion Reactor Physics, Ann Arbor Science Publishing Inc., Ann Arbor, Michigan (1976). B. L. Doyle and F. L. Vook, Thin Solid Films 63, 277 (1979).

    Google Scholar 

  121. M. R. Piggot and A. C. Siarkowski, J. Iron Steel Inst. 901 (December 1972).

    Google Scholar 

  122. N. V. Parthasaradhy, Met. Finish. 36 (August 1974).

    Google Scholar 

  123. J. P. Nityanandan, H. V. K. Udarfoa, H. N. Venkoba Rao, Y. Mahadevan, and K. R. Ramakrishnan, J. Met. Finish. 194 (September 1974).

    Google Scholar 

  124. P. C. T. DeBoer, W. J. McLean, and H. S. Homan, Int. J. Hydrogen Energy 1, 153 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Subramanyan, P.K. (1981). Electrochemical Aspects of Hydrogen in Metals. In: Bockris, J.O., Conway, B.E., Yeager, E., White, R.E. (eds) Electrochemical Materials Science. Comprehensive Treatise of Electrochemistry, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4825-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4825-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4827-7

  • Online ISBN: 978-1-4757-4825-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics