Skip to main content

Part of the book series: Comprehensive Treatise of Electrochemistry ((AN,volume 4))

Abstract

“Environment—construction” systems are comparable to biological and economic systems in their complexity. Indeed, let us try to classify the processes occurring in such systems. The main factors which may prove to be decisive for the optimal projecting of a certain construction should naturally be divided into three groups: material properties, technological factors, and operational factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. L. Logan, The Stress Corrosion of Metals, John Wiley and Sons, New York (1967).

    Google Scholar 

  2. N. D. Tomashov, The Theory of Corrosion and Protection of Metals, USSR Academy of Science Publishing, Moscow (1959) (in Russian).

    Google Scholar 

  3. G. V. Akimov, The Theory and Methods of Study of Metal Corrosion, USSR Academy of Science Publishing, Moscow (1959) (in Russian).

    Google Scholar 

  4. M. G. Fontana and N. D. Greene, Corrosion Engineering, McGraw-Hill, New York (1967).

    Google Scholar 

  5. T. P. Hoar, Electrode processes, in Modern Aspects of Electrochemistry, Vol. 3, J. O’M. Bockris, ed., Butterworths, London (1961).

    Google Scholar 

  6. G. P. Cherepanov, Mechanics of Brittle Fracture, McGraw-Hill, New York (1978).

    Google Scholar 

  7. H. H. Johnson and P. C. Paris, Sub-critical flaw growth, Eng. Fract. Mech. I, 3 (1968).

    Article  Google Scholar 

  8. B. F. Brown, The application of fracture mechanics to stress corrosion cracking, Metall. Rev. 13, 171 (1968).

    Article  CAS  Google Scholar 

  9. H. H. Johnson, Environmental cracking in high-strength materials, in Fracture, Vol. 3, H. Liebowitz, ed., Academic Press, New York (1971).

    Google Scholar 

  10. H. Uhlig, Stress corrosion cracking, in Fracture, Vol. 3, H. Liebowitz, ed., Academic Press, New York (1971).

    Google Scholar 

  11. V. A. Marichev, Environment-enhanced crack growth of high-strength materials, Zashch. Met. 11, 139 (1975) (in Russian).

    CAS  Google Scholar 

  12. G. P. Cherepanov, Mechanics of corrosive fracture, Physico-chem. Mech. Mater., No. 1 (1974) (in Russian).

    Google Scholar 

  13. R. N. Parkins, F. Mazza, J. J. Royuela, and J. G. Scully, Stress corrosion test methods, Brit. Corrosion J. 7, 154 (1972).

    CAS  Google Scholar 

  14. R. P. Wei, Some aspects of environment enhanced fatigue crack growth. Eng. Fract. Mech. I, 633 (1970).

    Article  Google Scholar 

  15. R. W. Staehle, B. F. Brown, J. Kruger, and A. Agrawal, eds., Localized Corrosion, NACE, Houston (1974).

    Google Scholar 

  16. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Oxford, England (1966).

    Google Scholar 

  17. V. V. Romanov, Corrosion Cracking of Metals, Mashgiz, Moscow (1980) (in Russian).

    Google Scholar 

  18. Passivity and Its Breakdown on Iron and Iron Base Alloys, Japan-USA Seminar, Honolulu, Hawaii, 1975.

    Google Scholar 

  19. J. A. Smith, M. H. Peterson, and B. F. Brown, Corrosion (Houston) 26, 539 (1970).

    Article  CAS  Google Scholar 

  20. M. Pourbaix, Corrosion (Houston) 26, 431 (1970).

    Article  CAS  Google Scholar 

  21. K. J. Vetter and H. H. Strehblow, in Localized Corrosion, R. W. Staehle, ed., NACE, Houston (1974).

    Google Scholar 

  22. H. W. Pickering and P. R. Fra“kenthal, J. Electrochem. Soc. 119, 1297 (1972).

    Article  CAS  Google Scholar 

  23. J. R. Galvele, Transport processes and the mechanism of pitting of metals, J. Electrochem. Soc. 123, 464 (1976).

    Article  CAS  Google Scholar 

  24. V. G. Levich, Physico-chemical Hydrodynamics, Fizmatgiz, Moscow (1959) (in Russian).

    Google Scholar 

  25. P. C. Paris and G. C. Sih, Stress analysis of cracks, in Fracture Toughness Testing and Its Applications, ASTM, Philadelphia (1965).

    Google Scholar 

  26. M. L. Williams, Stress singularities resulting from various boundary conditions in angular corners of plates in extension, J. Appl. Mech. 19 (4), 526 (1952).

    Google Scholar 

  27. I. N. Sneddon, The distribution of stress in the neighbourhood of a crack in an elastic solid, Proc. R. Soc. London Ser. A 187, 229–260 (1946).

    Article  Google Scholar 

  28. G. R. Irwin, Fracture, in Handbuch der Physik, Vol. 6, Springer-Verlag, Berlin (1958), pp. 551–590.

    Google Scholar 

  29. G. P. Cherepanov, Singular solutions in the theory of elasticity, in Mechanics of Solids, Sudostroenie, Leningrad (1970) (in Russian).

    Google Scholar 

  30. H. Liebowitz, ed., Fracture, An Advanced Treatise,in 7 volumes, Academic Press, New York (1968–1974).

    Google Scholar 

  31. G. C. Sih, ed., Mechanics of Fracture Series, Vol. I, Lehigh University Press, Bethlehem, Pennsylvania (1973).

    Google Scholar 

  32. H. Tada, P. Paris, and G. Irwin, The Stress Analysis of Cracks Handbook, DEL Research Corporation, Hellertown, Pennsylvania 1973.

    Google Scholar 

  33. Fracture toughness testing and its applications, ASTM Special Technical Publication No. 381, Chicago, 1965.

    Google Scholar 

  34. W. F. Brown and J. E. Srawley, Plane strain crack toughness testing of high strength metallic materials, ASTM Special Technical Publication No. 410, 1969.

    Google Scholar 

  35. R. S. Sharpe, ed., Research Techniques in Nondestructive Testing, Academic Press, London (1970).

    Google Scholar 

  36. Fracture toughness, ASTM Special Technical Publication No. 514, 1972.

    Google Scholar 

  37. Cracks and fracture, ASTM Special Technical Publication No. 601, 1976.

    Google Scholar 

  38. G. P. Cherepanov, Cracks in solids, Int. J. Solids Structures, 4, 811–831 (1968).

    Article  Google Scholar 

  39. G. R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech. 24 (3), 361 (1957).

    Google Scholar 

  40. A. A. Griffith, The phenomenon of rupture and flow in solids, Philos. Trans. R. Soc. London Ser. A 221, 163–198 (1920).

    Google Scholar 

  41. M. E. Shank, C. E. Spaeth, V. W. Cooke, and J. E. Coyne, Solid-fuel rocket chambers for operation at 240.000 psi and above, Met. Prog. 76, 74 (1959).

    CAS  Google Scholar 

  42. G. R. Irwin and J. A. Kies, Fracture theory applied to high strength steels, Met. Prog. 78, 73 (1960).

    Google Scholar 

  43. H. Bernstein and J. A. Kies, Crack growth during static tests of rocket motor cases, Met. Prog. 78, 79 (1960).

    Google Scholar 

  44. E. A. Steigerwald, Delayed failure of high-strength steel in liquid environments, Proc. ASTM 60, 750 (1960).

    CAS  Google Scholar 

  45. H. H. Johnson and A. M. Willner, Moisture and stable crack growth in a high strength steel, Appl. Mater. Res. 4, 34 (1965).

    CAS  Google Scholar 

  46. B. F. Brown and C. D. Beachem, A study of the stress factor in corrosion cracking, Corros. Sci. 5, 745 (1965).

    Article  Google Scholar 

  47. G. L. Hanna, A. R. Troiano, and E. A. Steigerwald, A mechanism for the embrittlement of high strength steels by aqueous environments, ASM Trans. O. 57, 658 (1964).

    CAS  Google Scholar 

  48. G. G. Hancock and H. H. Johnson, Hydrogen, oxygen and subcritical crack growth in a high-strength steel, Trans. Metall. Soc. A.IME. 236, 513 (1966).

    CAS  Google Scholar 

  49. S. Wiederhorn, The influence of water vapor on crack propagation in soda-lime glass, Natl. Bur. Stand. Rep. No. 9442 (1966).

    Google Scholar 

  50. G. R. Irwin, Moisture assisted slow crack extension in glass plates, Naval. Res. Lab. Memo. Rep. No. 1678 (1966).

    Google Scholar 

  51. J. H. Mulherin, Stress corrosion susceptibility of high strength steel, in relation to fracture toughness, Trans. A.S.M.E. Ser. D 88, 777 (1966).

    CAS  Google Scholar 

  52. M. H. Peterson, B. F. Brown, R. L. Newbegin, and R. E. Groover, Stress corrosion cracking of high strength steels and titanium alloys in chloride solutions at ambient temperature, Corrosion (Houston) 23, 142 (1967).

    Article  CAS  Google Scholar 

  53. W. A. Van der Sluys, Effects of repeated loading and moisture on the fracture toughness of SAE 4340 steel, J. Basic. Eng. Trans. A.S.M.E. Ser. D 87, 363 (1965).

    Article  Google Scholar 

  54. H. R. Smith, D. E. Piper, and F. K. Downey, A study of stess-corrosion cracking by wedge-force loading, Eng. Fracture Mech. I, 123 (1968).

    Article  Google Scholar 

  55. G. P. Cherepanov, Invariant F-integrals and some of their applications in mechanics, Appl. Math. Mech. 41 (3), (1977) (in Russian).

    Google Scholar 

  56. J. D. Eshelby, Philos. Trans. R. Soc. A244, 87 (1951).

    Article  Google Scholar 

  57. G. P. Cherepanov, Crack propagation in continuous media, J. Appl. Math. Mech. 31 (3), 504 (1967).

    Article  Google Scholar 

  58. J. R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, Trans. ASME J. Appl. Mech. 379 (1968).

    Google Scholar 

  59. J. R. Rice, Mathematical analysis in the mechanics of fracture, in Treatise on Fracture, Vol. 2, Academic Press, New York (1968), p. 191.

    Google Scholar 

  60. G. P. Cherepanov, L. V. Ershov, and G. G. Kuzmin, On the growth of corrosion cracks, Corrosion (Houston) 27 (12) (1972).

    Google Scholar 

  61. G. P. Cherepanov, On the theory of electrochemical stress corrosion cracking, in Proceedings of the Third Congress on Fracture, Munich, 1973.

    Google Scholar 

  62. G. N. Nikiforchin, Study of crack resistance of high-strength steels under static loadings in liquids, thesis, Lvov, 1977.

    Google Scholar 

  63. Hideo Kitagawa, Ryoji Yuuki, and Toshiaki Ohira, Crack-morphological aspects in fracture mechanics, Eng. Fracture Mech. 7 (3), 515 (1975).

    Article  Google Scholar 

  64. M. O. Speidel, Branching of stress corrosion cracks in aluminum alloys, NATO Conference on the Theory of Stress Corrosion Cracking in Alloys, Brussels, 1971, p. 289.

    Google Scholar 

  65. C. S. Carter, Stress corrosion crack branching in high strength steels, Eng. Fracture Mech. 3, I (1971).

    Google Scholar 

  66. S. Mostovoy, H. R. Smith, R. G. Lingwall, and E. I. Rippling, A note on stress corrosion cracking rates, Eng. Fracture Mech. 3, 291 (1971).

    Article  CAS  Google Scholar 

  67. C. S. Carter, The effect of silicon on the stress corrosion resistance of low alloy high strength steel, Corrosion (Houston) 25, 423 (1969).

    Article  CAS  Google Scholar 

  68. C. S. Carter, The effect of heat treatment on the fracture toughness and subcritical crack growth characteristics of a 350-grade maraging steel, Metall. Trans. I, 1551 (1970).

    Google Scholar 

  69. J. A. Feeney and M. J. Blackburn, Effect of microstructure on the strength, toughness, and SCC susceptibility of a metastable beta titanium alloy (Ti-11.5Mo-6Zr-4.5Sn), Metall. Trans. I, 3309 (1970).

    Google Scholar 

  70. R. J. Bucci and P. C. Paris, Observations on sustained load environmental crack growth of a titanium 8A1-IMo-IV alloy, Corrosion (Houston) 27, 525 (1971).

    Article  CAS  Google Scholar 

  71. J. M. Krafft and J. H. Mulherin, Trans. ASM 62, 64 (1969).

    CAS  Google Scholar 

  72. G. P. Cherepanov, On the theory of crack growth due to hydrogen embrittlement, Corrosion (Houston) 28 (8), 305 (1973).

    Article  Google Scholar 

  73. J. T. Ryder and J. P. Gallagher, Environmentally controlled fatigue crack-growth rates in SAE 4340 steel-temperature effects, J. Basic Eng. Trans. ASME 92, 133 (1970).

    Article  Google Scholar 

  74. W. W. Gerberich and C. E. Hartbower, Monitoring crack growth of hydrogen embrittlement and stress corrosion cracking by acoustic emission, in Proceedings of the Conference on the Fundamental Aspects SCC, September 11–15, 1967, The Ohio State University, Department of Metallurgical Engineering (1969).

    Google Scholar 

  75. A. J. McEvily, J. B. Clark, and A. P. Bond, Effect of thermal-mechanical processings on the fatigue and stress-corrosion properties of an Al-Zn-Mg alloy, Trans. Metal. Soc. AIME 60, 661 (1967).

    CAS  Google Scholar 

  76. A. Hartman and J. Schijve, The effect of environment and load frequence on the crack propagation low for macro-fatigue crack growth in aluminium alloys, Eng. Fracture Mech. 1, 615 (1970).

    Article  CAS  Google Scholar 

  77. R. P. Wei and J. D. Landes, The effect of DZO on fatigue crack propagation in a high-strength aluminum alloy, Int. J. Fract. Mech. 5(1), (1969).

    Google Scholar 

  78. T. W. Crocker and E. A. Lange, Corrosion-fatigue crack propagation studies of some new high-strength structural steels, Trans. ASME D, J. Basic Eng. 91, 570 (1969).

    Article  Google Scholar 

  79. R. J. Dunahe, McI. H. Clark, P. Atanmo, R. Kumble, and A. J. McEvily, Crack opening displacement and the rate of fatigue crack growth, Int. J. Fracture Mech. 8, 209 (1972).

    Article  Google Scholar 

  80. H. H. Smith and P. Shahinian, presented at the International Conference on Corrosion Fatigue, 14–18 June 1971, Storrs, Connecticut.

    Google Scholar 

  81. P. Furrer and H. Warlimont, Gefüge und Eigenschaften von Aluminiumlegierungen nach rascher Erstarrung, Z. Metallkd. 62 (I), 12 (1971).

    CAS  Google Scholar 

  82. M. J. Owen, Fatigue of carbon-fiber-reinforced plastics, in Composite Materials, Vol. 5, Fracture and Fatigue, L. J. Broutman and R. H. Krock, eds., Academic Press, New York (1974), p. 342.

    Google Scholar 

  83. G. P. Cherepanov, On crack growth under cyclic loading, Appl. Mech. Eng. Phys. 6 (1968) (in Russian).

    Google Scholar 

  84. G. P. Cherepanov and H. Halmanov, On the theory of fatigue crack growth, Eng. Fracture Mech. 4, 219 (1972).

    Article  CAS  Google Scholar 

  85. R. G. Forman, V. E. Kearney, and R. M. Engle, Numerical analysis of crack propagation in cycle loaded structures, Trans. ASME Ser. D 89 (3) (1967).

    Google Scholar 

  86. G. P. Cherepanov and H. Halmanov, On the crack growth below Krscc, Eng. Fracture Mech. 6 (3), 551 (1974).

    Article  CAS  Google Scholar 

  87. .1. M. Barsom, E. J. Imhof, and S. T. Rolfe, Fatigue crack propagation in high yield strength steels, Eng. Fracture Mech. 2, 301 (1971).

    Article  Google Scholar 

  88. G. F. Pittinato, Hydrogen enhanced fatigue crack growth in Ti-6A1–4V EU weldments, Metall. Trans. 3 (I) (1972).

    Google Scholar 

  89. G. P. Cherepanov and V. D. Kuliev, Effect of loading frequence and inactive environment to the fatigue crack growth, Strength Problems, No. 1 (1972) (in Russian).

    Google Scholar 

  90. B. F. Brown, G. T. Fujü, and E. P. Dahlberg, J. Electrochem. Soc. 116, 218 (1969).

    Article  CAS  Google Scholar 

  91. B. F. Brown, NATO Conference on the Theory of Stress Corrosion Cracking in Alloys, Brussels, 1971, p. 186.

    Google Scholar 

  92. T. R. Beck, NATO Conference on the Theory of Stress Corrosion Cracking in Alloys, Brussels, 1971, p. 68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cherepanov, G.P. (1981). Stress Corrosion Cracking. In: Bockris, J.O., Conway, B.E., Yeager, E., White, R.E. (eds) Electrochemical Materials Science. Comprehensive Treatise of Electrochemistry, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4825-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4825-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4827-7

  • Online ISBN: 978-1-4757-4825-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics