Skip to main content

Electrochemical Passivation of Metals

  • Chapter
Electrochemical Materials Science

Part of the book series: Comprehensive Treatise of Electrochemistry ((AN,volume 4))

Abstract

It is common knowledge that metallic iron and nickel placed in acidic solutions corrode with evolution of hydrogen gas. In concentrated nitric acid, however, they suddenly become protected against corrosion some time after violent metal dissolution and gas evolution have occurred. A sudden decrease of metal dissolution is also observed when they are anodically polarized in acid and neutral solutions. The unstable surface of actively corroding metals in aqueous solutions can thus sometimes be made stable in the presence of a strong oxidant or by polarizing the electrode potential in the anodic (positive) direction. The phenomena, which was found in the days of Faraday,(1) is called the electrochemical passivation of metals, and the corrosion-resistance state of the stable surface is called the passive state, as contrasted with the active state of the corroding surface; the term chemical passivation is sometimes used for the passivation caused by oxidants and the anodic passivation for the anodic formation of passivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Faraday, Experimental Research in Electricity, Vol. II,University of London, London (1844), pp. 2 and 244.

    Google Scholar 

  2. C. Wagner, Corros. Sci. 5, 751 (1963).

    Article  Google Scholar 

  3. M. Jänchen and K. Schwabe, Z. Phys. Chem. (Leipzig) 237, 129 (1976).

    Google Scholar 

  4. Ya. M. Kolotyrkin and G. G. Kossii, Zaschtschita Metallov 1, 272 (1965).

    CAS  Google Scholar 

  5. K. E. Heusler, Z. Elektrochem. 62, 582 (1958).

    Google Scholar 

  6. J. O’M. Bockris, D. Drazic, and A. R. Despic, Electrochim. Acta 4, 315 (1961).

    Google Scholar 

  7. L. Franke, W. Forker, and P. Schultheiss, Electrochim. Acta 18, 877 (1973).

    Article  CAS  Google Scholar 

  8. N. Sato, Trans. Japan, Inst. Metals 6, 63 (1965).

    CAS  Google Scholar 

  9. W. J. Plieth and I. J. Vetter, Ber. Bunsenges. Phys. Chem. 73, 1977 (1969).

    Google Scholar 

  10. I. Epelboin and M. Keddam, Electrochim. Acta 17, 177 (1972).

    Article  CAS  Google Scholar 

  11. R. D. Armstrong and M. H. Henderson, J. Electroanal. Chem. 39, 222 (1972).

    Article  CAS  Google Scholar 

  12. R. D. Armstrong, M. Henderson, and H. R. Thirsk, J. Electroanal. Chem. 35, 119 (1972).

    Article  CAS  Google Scholar 

  13. R. D. Armstrong and R. E. Firman, J. Electroanal. Chem. 34, 391 (1972).

    Article  CAS  Google Scholar 

  14. T. Heuman and M. Klimmeck, in Proceedings of 5th ICMC-Tokyo, Japan, 1972, NACE, Houston (1975), p. 115.

    Google Scholar 

  15. I. Epelboin, C. Gabrielli, M. Keddam, and H. Takenouchi, Electrochim. Acta 20, 913 (1975).

    Article  CAS  Google Scholar 

  16. F. Flade, Z. Phys. Chem. 76, 513 (1911).

    CAS  Google Scholar 

  17. K. R. Bonhoeffer, Z. Metallk. 44, 77 (1953).

    Google Scholar 

  18. M. J. Pryor, J. Electrochem. Soc. 106, 557 (1959).

    Article  Google Scholar 

  19. C. Wagner, Ber. Bunsenges. Phys. Chem. 77, 1090 (1973).

    CAS  Google Scholar 

  20. W. Schottky, Halbleiter Problem II, 233 (1958).

    Google Scholar 

  21. M. Nagayama and M. Cohen, J. Electrochem. Soc. 110, 670 (1963).

    Article  CAS  Google Scholar 

  22. H. H. Uhlig, Z. Elektrochem. 62, 626 (1958).

    Google Scholar 

  23. U. F. Franck, Z. Naturforsch. 49, 378 (1949).

    Google Scholar 

  24. Th. Heuman and F. W. Diekötter, Z. Elektrochem. 62, 745 (1958).

    Google Scholar 

  25. R. Landsberg and M. Hollnagel, Z. Elektrochem. 58, 680 (1954).

    CAS  Google Scholar 

  26. R. Landsberg and M. Hollnagel, Z. Elektrochem. 60, 1098 (1956).

    CAS  Google Scholar 

  27. K. F. Bonhoeffer and K. J. Vetter, Z. Phys. Chem. 196, 127 (1950).

    CAS  Google Scholar 

  28. U. Ebersbach, K. Schwabe, and K. Ritter, Electrochim. Acta 12, 927 (1967).

    Article  CAS  Google Scholar 

  29. H. G. Feller, M. Kesten, and J. Krupki, in Proceedings of 5th ICMC-Tokyo, Japan, 1972, NACE, Houston (1975), p. 155.

    Google Scholar 

  30. N. Sato, K. Kudo, and K. Nishimura, J. Electrochem. Soc. 123, 1419 (1976).

    Article  CAS  Google Scholar 

  31. N. Sato, K. Kudo, and T. Noda, Z. Phys. Chem. N.F. 98, 217 (1975).

    Google Scholar 

  32. M. Seo, N. Sato, J. B. Lumsden, and R. W. Staehle, Corros. Sci. 17, 209 (1977).

    Article  CAS  Google Scholar 

  33. C. L. Foley, J. Kruger, and C. J. Bechtoldt, J. Electrochem. Soc. 114, 994 (1967).

    Article  CAS  Google Scholar 

  34. H. T. Yolken, J. Kruger, and J. P. Calvert, Corros. Sci. 8, 103 (1968).

    Article  CAS  Google Scholar 

  35. K. Kudo, T. Shibata, G. Okamoto, and N. Sato, Corros. Sci. 8, 809 (1963).

    Article  Google Scholar 

  36. R. W. Revie, B. G. Baker, and J. O’M. Bockris, J. Electrochem. Soc. 122, 1560 (1975).

    Article  Google Scholar 

  37. W. E. O’Grady and J. O’M. Bockris, Surf. Sci. 38, 249 (1973).

    Article  Google Scholar 

  38. R. Nishimura and N. Sato, Boshoku Gijutsu ( Corrosion Engineering, Japan ) (1977).

    Google Scholar 

  39. K. J. Vetter and F. Gorn, Z. Phys. Chem. N.F. 86, 113 (1973a).

    CAS  Google Scholar 

  40. E. K. Oshe, I. L. Rosenfeld, and V. G. Doroskenko, Dokl. Akad. Nauk SSSR 194, 614 (1970).

    Google Scholar 

  41. N. Sato and K. Kudo, Electrochim. Acta 16, 447 (1971).

    Article  CAS  Google Scholar 

  42. K. E. Heusler and K. Schoner, Ber. Bunsenges Phys. Chem. 77, 885 (1973).

    CAS  Google Scholar 

  43. H. Gobrecht, W. Paatsch, and R. Thull, Ber. Bunsenges. Phys. Chem. 75, 1353 (1971).

    CAS  Google Scholar 

  44. T. Ohtsuka, Dissertation, Hokkaido University, Japan, 1976.

    Google Scholar 

  45. G. W. Simmons, E. Kellerman, and H. Leidheiser, Jr., J. Electrochem. Soc. 123, 1276 (1976).

    Article  CAS  Google Scholar 

  46. K. Sugimoto, K. Kishi, S. Ikeda, and Y. Sawada, J. Japan Inst. Metals 38, 54 (1974).

    CAS  Google Scholar 

  47. K. J. Vetter, Z. Elektrochem. 59, 67 (1955).

    Google Scholar 

  48. K. J. Vetter, J. Electrochem. Soc. 110, 597 (1963).

    Google Scholar 

  49. V. M. Novakovski and Y. A. Likkackev, Electrochim. Acta 12, 267 (1967).

    Google Scholar 

  50. K. E. Heusler, Ber. Bunsenges. Phys. Chem. 72, 1197 (1968).

    Google Scholar 

  51. K. J. Vetter and F. Gorn, Electrochim. Acta 18, 321 (1973b).

    Article  CAS  Google Scholar 

  52. K. G. Weil, Z. Elektrochem. 59, 711 (1955).

    Google Scholar 

  53. R. V. Moshtev, Ber. Bunsenges. Phys. Chem. 71, 1079 (1967).

    CAS  Google Scholar 

  54. N. Sato and M. Cohen, J. Electrochem. Soc. 111, 52 (1963).

    Google Scholar 

  55. A. M. Kuznetsov and R. R. Dogonadze, Izv. Akad. Nauk SSSR Ser. Him., No. 12, 2140 (1964); English Translation, Consultants Bureau, New York, p. 2042.

    Google Scholar 

  56. C. L. McBee and J. Kruger, Localized Corrosion, R. W. Staehle, B. F. Brown, J. Kruger, and A. Agrawal, Eds., NACE, Houston (1974), p. 252.

    Google Scholar 

  57. N. Sato, in Passivity and Its Breakdown on Iron and Iron Base Alloys, USA–Japan Seminar, 1975, R. W. Staehle and H. Okada, eds., NACE, Houston (1976), p. 1.

    Google Scholar 

  58. W. Paatsch, Ber. Bunsenges. Phys. Chem. 77, 895 (1973).

    CAS  Google Scholar 

  59. G. Okamoto, K. Tachibana, S. Nishiyama, and T. Sugita, in Passivity and Its Breakdown on Iron and Iron Base Alloys, USA–Japan Seminar, 1975, R. W. Staehle and H. Okada, eds., NACE, Houston (1976), p. 106.

    Google Scholar 

  60. J. Kruger, in Passivity and Its Breakdown on Iron and Iron Base Alloys, USA–Japan Seminar, 1975, R. W. Staehle and H. Okada, eds., NACE, Houston (1976), p. 91.

    Google Scholar 

  61. N. Sato, Electrochim. Acta 16, 1683 (1971).

    Article  CAS  Google Scholar 

  62. T. Shibata and T. Takeyama, Nature 260, 315 (1976).

    Article  CAS  Google Scholar 

  63. N. Sato, J. Electrochem. Soc. 123, 1197 (1976).

    Article  CAS  Google Scholar 

  64. U. F. Franck, Korrosion 13, 3 (1960).

    Google Scholar 

  65. Y. Hisamatsu, in Passivity and Its Breakdown on Iron and Iron Base Alloys, USA–Japan Seminar, 1975, R. W. Staehle and H. Okada, eds., NACE, Houston (1976), p. 99.

    Google Scholar 

  66. H. W. Pickering and R. P. Frankenthal, J. Electrochem. Soc. 119, 1297 (1972).

    Article  CAS  Google Scholar 

  67. J. R. Galvele, J. Electrochem. Soc. 123, 464 (1976).

    Article  CAS  Google Scholar 

  68. T. P. Hoar, Corros. Sci. 7, 341 (1967).

    Article  CAS  Google Scholar 

  69. T. Morozumi and M. Moriya, in Proceedings of 5th ICMC–Tokyo, 1972, NACE, Houston (1975), p. 322.

    Google Scholar 

  70. T. E. Hartman, J. Appl. Phys. 35, 3238 (1964).

    Google Scholar 

  71. U. F. Franck and K. Weil, Z. Elektrochem. 56, 814 (1952).

    CAS  Google Scholar 

  72. A. C. Makrides, J. Electrochem. Soc. 111, 394 (1964).

    Google Scholar 

  73. R. V. Moshtev, Electrochim. Acta 16, 2039 (1972).

    Google Scholar 

  74. J. W. Schultze and U. Stimming, Z. Phys. Chem. N.F. 98, 285 (1976).

    Google Scholar 

  75. N. D. Tomashov, Theory of Corrosion and Protection of Metals, MacMillan, New York (1966), p. 325.

    Google Scholar 

  76. G. Okamoto and N. Sato, J. Japan Inst. Metals 23, 725 (1959).

    Google Scholar 

  77. N. Sato and G. Okamoto, J. Electrochem. Soc. 110, 605 (1963).

    Article  CAS  Google Scholar 

  78. Ya. M. Kolotyrkin, Z. Elektrochem. 62, 664 (1958).

    Google Scholar 

  79. U. F. Franck, Werkstoffe Korr. 9, 504 (1958).

    Article  Google Scholar 

  80. N. D. Tomashov, G. P. Chernova, Yu. S. Ruskol, and G. A. Ayuyan, in Proceedings 5th ICMC–Tokyo, Japan, 1972, NACE, Houston (1975), p. 248.

    Google Scholar 

  81. G. Okamoto, Corros. Sci. 13, 471 (1973).

    Article  CAS  Google Scholar 

  82. L. Kiss, L. DoNgoc, and M. L. Varsanyi, Coll. Czech. Chem. Commun. 36, 914 (1971).

    Article  CAS  Google Scholar 

  83. T. Noda, Dissertation, Hokkaido University, Japan, 1973; T. Noda, K. Kudo, and N. Sato, Japan. Inst. Metals 37, 951, 1088 (1973).

    Google Scholar 

  84. M. Nagayama and M. Cohen, J. Electrochem. Soc. 109, 781 (1962).

    Article  CAS  Google Scholar 

  85. N. Sato, Dissertation, Hokkaido University, Japan, 1961.

    Google Scholar 

  86. K. J. Vetter and K. Arnold, Z. Elektrochem. 64, 244 (1960).

    CAS  Google Scholar 

  87. J. Kruger and J. P. Colvert, J. Electrochem. Soc. 114, 43 (1967).

    Google Scholar 

  88. N. Sato, K. Kudo, and M. Miki, J. Japan. Inst. Metals 35, 1007 (1971).

    CAS  Google Scholar 

  89. G. M. Florianovich, Ya. M. Kolotyrkin, and D. Kononova, Proceedings of the 4th ICMCAmsterdam, 1969, NACE, Houston (1972), p. 694.

    Google Scholar 

  90. W. Visscher and A. Damjanovic, Extended Abstracts, I.S.E. 27th Meeting, Zurich, 1976, No. 138.

    Google Scholar 

  91. E. K. Oshe and I. L. Rosenfeld, Extended Abstracts, 6th ICMC—Sydney, 1975, No. 1–23.

    Google Scholar 

  92. T. Shibata and G. Okamoto, Boshoku Gijutsu 21, 263 (1972).

    CAS  Google Scholar 

  93. T. Noda and N. Sato, J. Japan Inst. Metals 28, 1143 (1974).

    Google Scholar 

  94. R. D. Armstrong, D. F. Porter, and H. R. Thirsk, J. Phys. Chem. 72, 2300 (1968).

    Article  CAS  Google Scholar 

  95. H. P. Leckie and H. H. Uhlig, J. Electrochem. Soc. 113, 1262 (1966).

    Article  CAS  Google Scholar 

  96. Ya. M. Kolotyrkin, J. Electrochem. Soc. 108, 209 (1961).

    Article  Google Scholar 

  97. E. Brauns and W. Schwenk, Arch. Eisenhuttenw. 387 (1961); Werkstoffe Korr.12, 73 (1961).

    Google Scholar 

  98. W. Schwenk, Corrosion (Houston) 20, 129t (1964).

    Article  CAS  Google Scholar 

  99. G. Herbsleb, Werkstoffe Korr. 16, 929 (1965).

    Article  Google Scholar 

  100. H. J. Engell and N. D. Stolica, Z. Phys. Chem. N.F. 20, 113 (1959).

    CAS  Google Scholar 

  101. N. Sato, T. Nakagawa, K. Kudo, and M. Sakashita, in Localized Corrosion, R. W. Staehle, B. F. Brown, J. Kruger, and A. Agarawal, eds., NACE, Houston (1974), p. 447.

    Google Scholar 

  102. K. E. Heusler and L. Fischer, Werkstoffe Korr. 27, 551 (1976).

    Article  CAS  Google Scholar 

  103. R. Saito, graduation thesis, Hokkaido University, Japan, 1976.

    Google Scholar 

  104. H. H. Strehblow and J. Wenners, Z. Phys. Chem. N.F. 98, 199 (1975).

    CAS  Google Scholar 

  105. K. J. Vetter and F. Gorn, Werkstoffe Korr. 21, 703 (1970).

    Article  CAS  Google Scholar 

  106. H. Göhr and E. Lange, Z. Elektrochem. 62, 1292 (1957).

    Google Scholar 

  107. N. Sato and R. Nishimura, Boshoku Gijutsu (Corrosion Engineering, Japan) 26, 305 (1977); 27, 457 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sato, N., Okamoto, G. (1981). Electrochemical Passivation of Metals. In: Bockris, J.O., Conway, B.E., Yeager, E., White, R.E. (eds) Electrochemical Materials Science. Comprehensive Treatise of Electrochemistry, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4825-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4825-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4827-7

  • Online ISBN: 978-1-4757-4825-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics