Skip to main content

Electrochemistry and Corrosion on Homogeneous and Heterogeneous Metal Surfaces

  • Chapter
Electrochemical Materials Science

Part of the book series: Comprehensive Treatise of Electrochemistry ((AN,volume 4))

Abstract

The driving force for a reaction is the change in Gibbs free energy, AG, for reactants to products. Mathematically this may be expressed by

$$ \Delta G = \mathop{\sum }\limits_{{products}} G - \mathop{\sum }\limits_{{reac\tan ts}} G $$
((1))

The summation signs are used as a general notation to indicate that all reactants and products are included in the calculation. From the nature of the free energy function, this calculation applies to initial (reactants) and final (product) states, and is independent of intervening states. The reaction may be investigated under controlled reversible conditions such as in an electrochemical cell, or under irreversible conditions such as in corrosion, and the same total free energy change (ΔG) will be appropriate. A quite general predictive capability may be applied to specific corrosion reactions since all the available thermodynamic data may be used for corrosion calculations directly. This enables the position of final equilibrium of the corrosion system to be established. The thermodynamic calculations have the limitation that no information of the rate of the reaction is provided, only what the final state will be for the process. Another limitation of the thermodynamic treatment is found when there are multiple reactions in a corrosion system but none are dominant, so that the final state is not well known. The limitations will not be described further here, but the influence of kinetics on corrosion behavior is significant and is the subject of the remaining sections. However, this section will briefly describe the sources of thermodynamic data and procedures for using it, since this remains a powerful resource despite the limitations.

This work was supported by United States Department of Energy (DOE) under contract DE-AC04-76DP00789. Sandia Laboratories is a DOE facility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. A. Guggenheim, Thermodynamics, North-Holland, Amsterdam (1959).

    Google Scholar 

  2. G. N. Lewis and M. Randall, Thermodynamics, revised by K. S. Pitzer and L. Brewer, McGraw-Hill, New York (1961).

    Google Scholar 

  3. NBS Technical Notes 270–3, 270–4, 270–5, U.S. Government Printing Office (1968–1971).

    Google Scholar 

  4. W. M. Latimer, Oxidation Potentials, Prentice-Hall, Englewood Cliffs, New Jersey (1952).

    Google Scholar 

  5. JANAF Thermochemical Tables, NSRDS-NBS 37, U.S. Government Printing Office (1971).

    Google Scholar 

  6. J. A. Plambeck, Fused Salt Systems, Encyclopedia of Electrochemistry of the Elements, Vol. X, A. J. Bard, ed., Marcel Dekker, New York (1976).

    Google Scholar 

  7. H. Leidheiser, Jr., The Corrosion of Copper, Tin, and Their Alloys, John Wiley and Sons, New York (1971).

    Google Scholar 

  8. M. Pourbaix, Atlas of Potential/pH Diagrams, Pergamon, Oxford (1962).

    Google Scholar 

  9. G. M. Florianovich and Ya. M. Kolotyrkin, Dokl. Akad. Nauk SSSR. 157, 422 (1964).

    CAS  Google Scholar 

  10. P. Delahay, Double Layer and Electrode Kinetics, Interscience, New York (1966).

    Google Scholar 

  11. K. J. Vetter, Electrochemical Kinetics, Academic Press, New York (1967).

    Google Scholar 

  12. J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry, Plenum Press, New York (1970).

    Google Scholar 

  13. J. O’M. Bockris, in Modern Aspects of Electrochemistry, Vol. 1, J. O’M. Bockris, ed., Butterworths, London (1954).

    Google Scholar 

  14. T. N. Anderson and H. Eyring, Physical Chemistry, H. Eyring, D. Henderson, W. Jost, Eds., Academic Press, New York (1970).

    Google Scholar 

  15. N. Tanaka and R. Tamamushi, Electrochim. Acta 9, 963 (1964).

    Article  CAS  Google Scholar 

  16. A. N. Frumkin, Advances in Electrochemistry and Electrochemical Engineering, Vol. 1, P. Delahay and C. W. Tobias, Eds., Interscience, New York (1961).

    Google Scholar 

  17. A. N. Frumkin, Advances in Electrochemistry and Electrochemical Engineering, Vol. III, P. Delahay and C. W. Tobias, Eds., Interscience, New York (1963).

    Google Scholar 

  18. J. P. Hoare, Advances in Electrochemistry and Electrochemical Engineering, Vol. VI, P. Delahay and C. W. Tobias, Eds., Interscience, New York (1967).

    Google Scholar 

  19. J. P. Hoare, The Electrochemistry of Oxygen, Interscience, New York (1968).

    Google Scholar 

  20. A. Damjanovic, Modern Aspects of Electrochemistry, Vol. 5, J. O’M. Bockris and B. E. Conway, Eds., Plenum Press, New York (1969).

    Google Scholar 

  21. C. Wagner and W. Traud, Z. Electrochem. 44, 391 (1938).

    CAS  Google Scholar 

  22. H. Kaesche, Z. Metallk. 61, 94 (1970).

    CAS  Google Scholar 

  23. M. Stern, Corrosion (Houston) 14, 440t (1958).

    CAS  Google Scholar 

  24. M. Stern and A. L. Geary, J. Electrochem. Soc. 104, 56 (1957).

    Article  CAS  Google Scholar 

  25. F. Mansfeld, Advances in Corrosion Science and Corrosion Engineering, Vol. 8, M. Fontana and R. Staehle Eds., Plenum Press, New York (1978).

    Google Scholar 

  26. C. Wagner, J. Electrochem. Soc. 98, 116 (1951).

    Article  CAS  Google Scholar 

  27. J. Newman, J. Electrochem. Soc. 113, 1235 (1966).

    Article  CAS  Google Scholar 

  28. J. S. Newman, Electrochemical Systems, Prentice-Hall, Englewood Cliffs, New Jersey (1973).

    Google Scholar 

  29. J. O’M. Bockris, D. Drazic, and A. R. Despic, Electrochim. Acta 4, 325 (1961).

    Article  Google Scholar 

  30. E. J. Kelly, J. Electrochem. Soc. 112, 124 (1965).

    Article  Google Scholar 

  31. S. Asakura and K. Nobe, J. Electrochem. Soc. 118, 13 (1971); S. Asakura and K. Nobe, J. Electrochem. Soc. 118, 19 (1971); R. J. Chin and K. Nobe, J. Electrochem. Soc. 119, 1457 (1972); H. C. Kuo and K. Nobe, 125, 853 (1978).

    Google Scholar 

  32. H. A. Uhlig, Corrosion and Corrosion Control, (New York: John Wiley and Sons, New York (1971).

    Google Scholar 

  33. T. N. Anderson, M. H. Ghandehari, and H. Eyring, J. Electrochem. Soc. 122, 1580 (1975).

    Article  Google Scholar 

  34. A. W. Tracy, in Corrosion Resistance of Metals and Alloys, F. L. LaQue and H. R. Copson, Eds., Reinhold, New York (1963).

    Google Scholar 

  35. U. Bertocci, Encyclopedia of Electrochemistry of the Elements, Vol. II, A. J. Bard, ed., Marcel Dekker, New York (1974).

    Google Scholar 

  36. U. Bertocci, Electrochim. Acta 11, 1261 (1966).

    Article  CAS  Google Scholar 

  37. B. C. Y. Lu and W. F. Graydon, Can. J. Chem. 32, 153 (1954).

    Article  CAS  Google Scholar 

  38. D. P. Gregory and A. C. Riddiford, J. Electrochem. Soc. 107, 950 (1960).

    Article  CAS  Google Scholar 

  39. I. Cornet, E. A. Barrington, and G. U. Behrsing, J. Electrochem. Soc. 108, 947 (1961).

    Article  CAS  Google Scholar 

  40. G. Demerits and A. P. van Peteghem, Corros. Sci. 18, 1041 (1978).

    Article  Google Scholar 

  41. W. H. Smyrl, in Electrochemical Techniques for Corrosion Investigations, F. Mansfeld and U. Bertocci, Eds., American Society for Testing Materials, Philadelphia (1980).

    Google Scholar 

  42. E. Mattson and J. O’M. Bockris, Trans. Faraday Soc. 55, 1586 (1959).

    Article  Google Scholar 

  43. W. H. Smyrl, unpublished data.

    Google Scholar 

  44. R. K. Astakhova and B. S. Krasikov, Zh. Prikl. Khim. 44, 363 (1972).

    Google Scholar 

  45. T. Hurlen, Acta Chem. Scand. 15, 1231 (1961).

    Article  CAS  Google Scholar 

  46. M. Braun and K. Nobe, J. Electrochem. Soc. 126, 1666 (1979).

    Article  CAS  Google Scholar 

  47. B. Miller and M. I. Bellavance, J. Electrochem. Soc. 119, 1510 (1972).

    Article  CAS  Google Scholar 

  48. A. L. Baccarella and J. C. Griess, Jr., J. Electrochem. Soc. 120, 459 (1973).

    Article  Google Scholar 

  49. R. V. Homsy and J. Newman, J. Electrochem. Soc. 121, 521 (1974).

    Article  CAS  Google Scholar 

  50. J. O’M. Bockris and N. Pentland, Trans. Faraday Soc. 48, 833 (1952).

    Article  Google Scholar 

  51. C. H. Bonfiglio, H. C. Albaya, and O. A. Cobo, Corros. Sci. 13, 717 (1973).

    Article  CAS  Google Scholar 

  52. M. Turner and P. A. Brock, Corros. Sci. 13, 973 (1973).

    Article  CAS  Google Scholar 

  53. G. Faita, G. Fiori, and D. Salvadore, Corros. Sci. 15, 383 (1975).

    Article  CAS  Google Scholar 

  54. R. P. Frankenthal and J. Kruger, Eds., Proceedings of the Fourth International Symposium on Passivity, The Electrochemistry Society, Princeton, New Jersey (1978).

    Google Scholar 

  55. Proceedings of the Fifth International Congress on Metallic Corrosion, NACE, Houston (1974).

    Google Scholar 

  56. J. Newman, in Advances in Electrochemistry and Electrochemical Engineering, Vol. 5, P. Delahay and C. W. Tobias Eds., Interscience, New York (1967).

    Google Scholar 

  57. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworths, London (1959).

    Google Scholar 

  58. C. Wagner, J. Electrochem. Soc. 99, 1 (1952).

    Article  Google Scholar 

  59. J. Newman, in Localized Corrosion, R. Staehle, ed., NACE, Houston (1974).

    Google Scholar 

  60. W. H. Smyrl and J. Newman, J. Electrochem. Soc. 119, 208 (1972).

    Article  CAS  Google Scholar 

  61. V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, New Jersey (1962).

    Google Scholar 

  62. B. T. Ellison and I. Cornet, J. Electrochem. Soc. 118, 68 (1971).

    Article  CAS  Google Scholar 

  63. F. L. LaQue, Corrosion (Houston) 13, 303t (1957).

    Google Scholar 

  64. J. R. Selman and C. W. Tobias, in Advances in Chemical Engineering, Vol. 10, T. B. Drew, G. R. Cokelet, J. W. Hoopes, Jr., and T. Vermeulen, Eds., Academic Press, New York (1978).

    Google Scholar 

  65. D. W. Siitari and R. C. Alkire, paper 238 presented at the Electrochemical Society Meeting, Los Angeles, October 1979.

    Google Scholar 

  66. J. Newman and W. Tiedeman, in Advances in Electrochemistry and Electrochemical Engineering, Vol. II, H. Gerischer and C. W. Tobias, Eds., Wiley Interscience, New York (1978).

    Google Scholar 

  67. R. C. Alkire and D. W. Siitari, J. Electrochemical Soc. 126, 15 (1979).

    Article  CAS  Google Scholar 

  68. J. Newman, D. N. Hanson, and K. Vetter, Electrochim. Acta 22, 829 (1977).

    Article  CAS  Google Scholar 

  69. W. H. Smyrl, unpublished data.

    Google Scholar 

  70. R. C. Alkire and G. Nicolaides, J. Electrochem. Soc. 121, 183 (1974).

    Article  CAS  Google Scholar 

  71. M. Stern, Corrosion (Houston) 14, 329t (1958).

    CAS  Google Scholar 

  72. K. B. Oldham and F. Mansfeld, J. Appl. Electrochem. 2, 183 (1972).

    Article  CAS  Google Scholar 

  73. V. G. Levich and A. Frumkin, Acta Physicochim. URSS 18, 1 (1943).

    Google Scholar 

  74. J. Newman, J. Electrochem. Soc. 113, 501 (1966).

    Article  CAS  Google Scholar 

  75. L. Nanis and W. Kesselman, J. Electrochem. Soc. 118, 454 (1971).

    Article  CAS  Google Scholar 

  76. J. T. Waber, J. Electrochem. Soc. 101, 271 (1954).

    Article  Google Scholar 

  77. J. T. Waber and M. Rosenbluth, J. Electrochem. Soc. 102, 344 (1955).

    Article  CAS  Google Scholar 

  78. J. T. Waber, J. Electrochem. Soc. 102, 420 (1955).

    Article  Google Scholar 

  79. J. T. Waber, J. Morrissey, and J. Ruth, J. Electrochem. Soc. 103, 138 (1956).

    Article  Google Scholar 

  80. J. T. Waber, J. Electrochem. Soc. 103, 567 (1956).

    Article  Google Scholar 

  81. J. A. Simmons, S. R. Coriell, and F. Ogburn, J. Electrochem. Soc. 114, 782 (1967).

    Article  CAS  Google Scholar 

  82. P. Doig and P. E. J. Flewitt, Philos. Mag. B 38, 27 (1978); Br. Corros. J. 13, 118 (1978).

    Article  CAS  Google Scholar 

  83. E. McCafferty, J. Electrochem. Soc. 124, 1869 (1977).

    Article  CAS  Google Scholar 

  84. L. Gal-Or, Y. Raz, and J. Yahalom, J. Electrochem. Soc. 120, 598 (1973).

    Article  CAS  Google Scholar 

  85. W. H. Smyrl and J. Newman, J. Electrochem. Soc. 123, 1423 (1976).

    Article  CAS  Google Scholar 

  86. W. H. Smyrl, unpublished data.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smyrl, W.H. (1981). Electrochemistry and Corrosion on Homogeneous and Heterogeneous Metal Surfaces. In: Bockris, J.O., Conway, B.E., Yeager, E., White, R.E. (eds) Electrochemical Materials Science. Comprehensive Treatise of Electrochemistry, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4825-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4825-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4827-7

  • Online ISBN: 978-1-4757-4825-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics