Skip to main content

Part of the book series: Kluwer Texts in the Mathematical Sciences ((TMS,volume 13))

  • 644 Accesses

Abstract

Let M be a microlinear object and E be a microlinear Euclidean R-module. A differential n-form on M with value in E will be a function that associates to every n-microcube on M an element of E and this in an n-linear and alternated way, in a sense that will be specified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Commented bibliography

  1. KOCK, A., REYES, G.E., and VEIT, B., Forms and integratin in synthetic differential geometry,Aarhus Preprint Series, n31 (1979/80).

    Google Scholar 

  2. KOCK, A., Differential forms in synthetic differential geometry,Aarhus Preprint Series n28(1978/79), llpp.

    Google Scholar 

  3. BELAIR„L., Calcul infinitésimal en géométrie différentielle synthétique, Master Thesis, Montréal, 1981.

    Google Scholar 

  4. BELAIR, L., et REYES, G.E., Calcul infinitésimal en géométrie différentielle synthétique, Sydney Category Seminar Reports, 1982, 32 pp.

    Google Scholar 

  5. KOCK, A., Synthetic Differential Geometry, London Math. Soc. Lect. Note Series 51, Cambridge Univ. Press, 1981.

    MATH  Google Scholar 

  6. I. MOERDIJK and G.E. REYES, Cohomology theories in synthetic differential geometry,in ([26]), 1–67.

    Google Scholar 

  7. I. MOERDIJK and G.E. REYES, De Rham’s theorem in a smooth topos, Report 83–20, Amsterdam (1983), 22 pp.

    Google Scholar 

  8. KOCK, A., Differential forms with values in groups, Bull. A.stralian Math. Soc. 25 (1982), 357–386.

    Article  MathSciNet  MATH  Google Scholar 

  9. MINGUEZ, M.C., Calculo diferencial sintetico y su interpretacion en modelos de prehaces, PhD. Thesis, 1985.

    Google Scholar 

  10. MINGUEZ, M.C., Wedge product of forms in synthetic differential geometry, Cahiers Top. Geom. Diff. Cat. 29 (1988), 59–66.

    MathSciNet  MATH  Google Scholar 

  11. MINGUEZ, M.C., Some combinatorial calculus on Lie derivative, Cahiers Top. Geom. Diff. Cat. 29 (1988), 241–247.

    MathSciNet  MATH  Google Scholar 

  12. FELIX, Y., and LAVENDHOMME, R., On De Rham’s theorem in synthetic differential geometry, J. Pure Appl. Algebra 65 (1990), 21–31.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lavendhomme, R. (1996). Differential forms. In: Basic Concepts of Synthetic Differential Geometry. Kluwer Texts in the Mathematical Sciences, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4588-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4588-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4756-7

  • Online ISBN: 978-1-4757-4588-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics