Skip to main content

Force-Velocity-Length Relationship during Cardiac Hypertrophy

Time Course of Activation

  • Chapter
Advances in Myocardiology

Abstract

Basic mechanical properties observed during cardiac hypertrophy were studied in left ventricular rat papillary muscles after exposure to chronic pressure and/or volume overloading. It is always possible, during such overloading conditions, to define the level of contractility in terms of a force-velocity-length (F-V-L) relationship regardless of time and initial length. Thus, during a determined period of the contraction phase and for a given total load, shortening velocity remained an univocal time-invariant function of shortening length, involving a time-independent maximum intensity of activation. The onset of this precise phase was reached relatively soon after stimulus. The time-independent F-V-L relation was observed both in controls and in hypertrophied heart muscles, whatever the degree and the type of induced hypertrophy, and even during the latest phases of congestive heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, B. C., and Mommaerts, W. F. H. M. 1959. A study of inotropic mechanisms in the papillary muscle preparation. J. Gen. Physiol. 42:533–551.

    Article  PubMed  CAS  Google Scholar 

  2. Bing, O. H. L., Matsushita, S., Fanburg, B. L., and Levine, H. J. 1971. Mechanical properties of rat cardiac muscle during experimental hypertrophy. Circ. Res. 28:234–245.

    Article  PubMed  CAS  Google Scholar 

  3. Brady, A. J. 1965. Time and displacement dependence of cardiac contractility: Problems in defining the active state and force-velocity relations. Fed. Proc. 24:1410–1420.

    PubMed  CAS  Google Scholar 

  4. Brady, A. J. 1966. Onset of contractility in cardiac muscle. J. Physiol. (Lond.) 184:560–580.

    CAS  Google Scholar 

  5. Brutsaert, D. L. 1974. The force-velocity-length-time interrelation of cardiac muscle. In: R. Porter, and D. W. Fitzsimons (eds.), The Physiological Basis of Starling’s Law of the Heart, pp. 155–175. Elsevier, Excerpta Medica, North-Holland, Amsterdam.

    Google Scholar 

  6. Brutsaert, D. L., and Claes, V. A. 1974. Onset of mechanical activation of mammalian heart muscle in calcium- and strontium-containing solutions. Circ. Res. 35:345–357.

    Article  PubMed  CAS  Google Scholar 

  7. Brutsaert, D. L., Claes, V. A., and Sonnenblick, E. H. 1971. Velocity of shortening of unloaded heart muscle and the length-tension relation. Circ. Res. 29:63–75.

    Article  PubMed  CAS  Google Scholar 

  8. Brutsaert, D. L., De Clerck, N. M., Goethals, M. A., and Housmans, P. R. 1978. Relaxation of ventricular cardiac muscle. J. Physiol. (Lond.) 283:469–480.

    CAS  Google Scholar 

  9. Brutsaert, D. L., Housmans, P. R., and Goethals, M. A. 1980. Dual control of relaxation: Its role in the ventricular function in the mammalian heart. Circ. Res. 47:637–652.

    Article  PubMed  CAS  Google Scholar 

  10. Dhalla, N. S., Das, P. K., and Sharma, G. P. 1978. Subcellular basis of cardiac contractile failure. J. Mol. Cell. Cardiol. 10:363–385.

    Article  PubMed  CAS  Google Scholar 

  11. Edman, K. A. P., and Nilsson, E. 1968. Mechanical parameters of myocardial contraction studied at a constant length of the contractile element. Acta Physiol. Scand. 72:205–219.

    Article  PubMed  CAS  Google Scholar 

  12. Edman, K. A. P., and Nilsson, E. 1972. Relationships between force and velocity of shortening in rabbit papillary muscle. Acta Physiol. Scand. 85:488–500.

    Article  PubMed  CAS  Google Scholar 

  13. Hatt, P. Y., Rakusan, K., Gastineau, P., and Laplace, M. 1979. Morphometry and ultra-structure of heart hypertrophy induced by chronic volume overload (aorto-caval fistula in the rat). J. Mol. Cell. Cardiol. 11:989–998.

    Article  PubMed  CAS  Google Scholar 

  14. Hill, A. V. 1951. The transition from rest to full activity in muscle: The velocity of shortening. Proc. R. Soc. Lond. [Biol.] 138:329–338.

    Article  Google Scholar 

  15. Jewell, B. R., and Wilkie, D. R. 1960. The mechanical properties of relaxing muscle. J. Physiol. (Lond.) 152:30–47.

    CAS  Google Scholar 

  16. Jouannot, P., and Hatt, P. Y. 1975. Rat myocardial mechanics during pressure-induced hypertrophy development and reversal. Am. J. Physiol. 229:355–364.

    PubMed  CAS  Google Scholar 

  17. Julian, F. J., and Moss, R. L. 1976. The concept of active state in striated muscle. Circ. Res. 38:53–59.

    Article  PubMed  CAS  Google Scholar 

  18. Lecarpentier, Y. C., Chuck, L. H. S., Housmans, P. R., De Clerck, N. M., and Brutsaert, D. L. 1979. Nature of load dependence of relaxation in cardiac muscle. Am. J. Physiol. 237:H455–H460.

    PubMed  CAS  Google Scholar 

  19. Lecarpentier, Y., Martin, J. L., Gastineau, P., and Hatt, P. Y. 1980. Mammalian heart mechanical properties during pressure and volume cardiac hypertrophy. J. Mol. Cell. Cardiol. 12(Suppl. 1):92.

    Google Scholar 

  20. Sonnenblick, E. H. 1962. Force-velocity relations in mammalian heart muscle. Am. J. Physiol. 202:931–939.

    PubMed  CAS  Google Scholar 

  21. Sonnenblick, E. H. 1962. Implications of muscle mechanics in the heart. Fed. Proc. 21(Suppl.):975–990.

    PubMed  CAS  Google Scholar 

  22. Sonnenblick, E. H. 1965. Instantaneous force-velocity-length determinants in the contraction of heart muscle. Circ. Res. 16:441–451.

    Article  PubMed  CAS  Google Scholar 

  23. Sonnenblick, E.H. 1967. Active state in heart muscle. Its delayed onset and modification by inotropic agents. J. Gen. Physiol. 50:661–676.

    Article  PubMed  CAS  Google Scholar 

  24. Sonnenblick, E. H., and Parmley, W. W. 1967. Active state in heart muscle: Force-velocity-length relations, and the variable onset and duration of maximum active state. In: D. I. Abramson (ed.), Circulation in the Extremities, pp. 65–83. Academic Press, London, New York.

    Google Scholar 

  25. Spann, J. F., Buccino, R. A., Sonnenblick, E. H., and Braunwald, E. 1967. Contractile state of cardiac muscle obtained from cats with experimentally produced ventricular hypertrophy and heart failure. Circ. Res. 21:341–354.

    Article  PubMed  Google Scholar 

  26. Spann, J. F., Covell, J. W., Eckberg, A. L., Sonnenblick, E. H., Ross, J., Jr., and Braunwald, E. 1972. Contractile performance of the hypertrophied and chronically failing cat ventricle. Am. J. Physiol. 223:1150–1157.

    PubMed  Google Scholar 

  27. Taylor, S. R., and Rüdel, R. 1970. Striated muscle fibers: Inactivation of contraction induced by shortening. Science 167:882–884.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lecarpentier, Y., Gastineau, P., Hatt, P.Y., Martin, J.L. (1983). Force-Velocity-Length Relationship during Cardiac Hypertrophy. In: Chazov, E., Saks, V., Rona, G. (eds) Advances in Myocardiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4441-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4441-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4443-9

  • Online ISBN: 978-1-4757-4441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics