Skip to main content

Abstract

Mode matching technique combined with spectral domain representation is used to study the guidance properties of microstrip Unes with periodically corrugated ground plane. Field components in the corrugated region are expanded by standing wave mode functions in the guidance direction and by Fourier integral in the transversal direction. Integral equations are formed in terms of surface currents on the microstrip. Dispersion relation is then obtained by applying method of moments to solve the integral equations. Various geometrical and electrical parameters affecting the pass-band/stop-band characteristics of the first stop-band are studied. Singularity distribution in the complex plane is also inspected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Leung and C. A. Balanis, “Attenuation distortion of transient signals in microstrip,” IEEE Trans. Microwave Theory Tech., vol.36, pp.765–769, Apr. 1988.

    Article  Google Scholar 

  2. E. J. Denlinger, “A frequency dependent solution for microstrip transmission lines,” IEEE Trans. Microwave Theory Tech., vol.19, pp.30–39, Jan. 1971.

    Article  Google Scholar 

  3. T. Itoh and R. Mittra, “Spectral-domain approach for calculating the dispersion characteristics of microstrip lines,” IEEE Trans. Microwave Theory Tech., vol.21, pp.496–499, July 1973.

    Article  Google Scholar 

  4. P. Bhartia and P. Pramanick, “A new microstrip dispersion model,” IEEE Trans. Microwave Theory Tech., vol.32, pp.1379–1384, Oct. 1984.

    Article  Google Scholar 

  5. F. J. Glandorf and I. Wolff, “A spectral-domain analysis of periodically nonuniform microstrip lines,” IEEE Trans. Microwave Theory Tech., vol.35, pp.336–343, Mar. 1987.

    Article  Google Scholar 

  6. N. V. Naur and A. K. Mallick, “An analysis of a width-modulated microstrip periodic structure,” IEEE Trans. Microwave Theory Tech., vol.32, pp.200–204, Feb. 1984.

    Article  Google Scholar 

  7. T. Kitazawa and R. Mittra, “An investigation of striplines and fin lines with periodic stubs,” IEEE Trans. Microwave Theory Tech., vol.32, pp.684–688, July 1984.

    Article  Google Scholar 

  8. Y. Fukuoka and T. Itoh, “Slow-wave coplanar waveguide on periodically doped semiconductor substrate,” IEEE Trans. Microwave Theory Tech., vol.31, pp.1013–1017, Dec. 1983.

    Article  Google Scholar 

  9. S. W. Chen, X. P. Liang, and K. A. Zaki, “Propagation in periodically loaded corrugated waveguides,” IEEE Trans. Magn., vol.25, pp.3055–3057, July 1989.

    Article  Google Scholar 

  10. J.-F. Kiang, S. M. Ali, and J. A. Kong, “Propagation properties of striplines periodically loaded with crossing strips,” IEEE Trans. Microwave Theory Tech., vol.37, pp.776–786, Apr. 1989.

    Article  Google Scholar 

  11. Q. Xue, K. M. Shum, and C. H. Chan, “Novel 1-D photonic bandgap microstrip transmission line,” IEEE MTT-S Int. Microwave Symp. Dig., pp.354–357, 2000.

    Google Scholar 

  12. K. Ogusu, “Propagation properties of a planar dielectric waveguide with periodic metallic strips,” IEEE Trans. Microwave Theory Tech., vol.29, pp.16–21, Jan. 1981.

    Article  Google Scholar 

  13. F. J. Glandorf and I. Wolff, “A spectral-domain analysis of periodically nonuniform coupled microstrip lines,” IEEE Trans. Microwave Theory Tech., vol.36, pp.522–528, Mar. 1988.

    Article  Google Scholar 

  14. C. Surawatpunya, M. Tsutsumi, and N. Kumagai, “Bragg interaction of electromagnetic waves in a ferrite slab periodically loaded with metal strips,” IEEE Trans. Microwave Theory Tech., vol.32, pp.689–695, July 1984.

    Article  Google Scholar 

  15. D. Cadman, D. Hayes, R. Miles, and R. Kelsall, “Simulation results for a novel optically controlled photonic bandgap structure for microstrip lines,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 110–115, 2000.

    Google Scholar 

  16. H. Y. D. Yang, “Characteristics of guided and leaky waves on multilayer thin-film structures with planar material gratings,” IEEE Trans. Microwave Theory Tech., vol.45, pp.428–435, June 1997.

    Article  Google Scholar 

  17. R. B. Hwang and S. T. Peng, “Guidance characteristics of two-dimensionally periodic impedance surface,” IEEE Trans. Microwave Theory Tech., vol.47, pp.2503–2511, Dec. 1999.

    Article  Google Scholar 

  18. F. R. Yang, K. R Ma, Y. Qian, and T. Itoh, “A uniplanar compact photonic-bandgap(uc-pbg) structure and its applications for microwave circuits,” IEEE Trans. Microwave Theory Tech., vol.47, pp.1509–1514, Aug. 1999.

    Article  Google Scholar 

  19. H. Y. D. Yang, “Theory of microstip lines on artificial periodic substrates,” IEEE Trans. Microwave Theory Tech., vol.47, pp.629–635, June 1997.

    Article  Google Scholar 

  20. I. Rumsey, M. P. May, and P. K. Kelly, “Photonic bandgap structure used as filters in microstrip circuits,” IEEE Microwave Guided Wave Lett., vol.8, pp.336–338, Oct. 1998.

    Article  Google Scholar 

  21. T. Kim, and C. Seo, “A novel photonic bandgap structure for low-pass filter of wide stopband,” IEEE Microwave Guided Wave Lett., vol.10, pp.13–15, Jan. 2000.

    Article  Google Scholar 

  22. M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, and M. Sorolla “Multiple-frequency-tuned photonic bandgap microstrip structures,” IEEE Microwave Guided Wave Lett., vol.10, pp.220–222, June 2000.

    Article  Google Scholar 

  23. K. E. Bean, “Anisotropic etching of Si,” IEEE Trans. Electron. Dev., vol.25, pp.1185-, 1978.

    Article  Google Scholar 

  24. M. Guglielmi and D. R. Jackson, “Low frequency location of the leaky-wave poles for a dielectric layer,” TEEE Trans. Microwave Theory Tech., vol.38, pp.1743–1746, Nov. 1990.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kiang, JF., Hsu, HL., Cheng, YS. (2004). Microstrip Lines with a Periodically Corrugated Ground Plane. In: Novel Technologies for Microwave and Millimeter — Wave Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4156-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4156-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5401-5

  • Online ISBN: 978-1-4757-4156-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics