Skip to main content

Frequency-Domain Lifetime Measurements

  • Chapter
Principles of Fluorescence Spectroscopy

Abstract

In the preceding chapter we described the theory and instrumentation for measuring fluorescence intensity decays using time-domain measurements. In the present chapter we continue this discussion, but we now consider the alternative method called frequency-domain (FD) fluorometry. In this method the sample is excited with light which is intensity-modulated at a high frequency comparable to the reciprocal of the lifetime. When this is done, the emission is also intensity-modulated at the same frequency. However, the emission does not precisely follow the excitation but rather shows time delays and amplitude changes which are determined by the intensity decay law of the sample. To be more precise, the time delay is measured as a phase-angle shift between the excitation and emission, as was shown in Figure 4.2. The peak-to-peak height of the modulated emission is decreased relative to that of the modulated excitation and provides another independent measure of the lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gratton, E., and Limkeman M., 1983, A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution, Biophys. J. 44: 315–324.

    Article  CAS  Google Scholar 

  2. Lakowicz, J. R., and Maliwal, B. P., 1985, Construction and performance of a variable-frequency phase-modulation fluorometer, Biophys. Chem. 21: 61–78.

    Article  CAS  Google Scholar 

  3. Lakowicz, J. R., and Gryczynski, I., 1991, Frequency-domain fluorescence spectroscopy, in Topics in Fluorescence Spectroscopy, Volume 1, Techniques, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 293–355.

    Google Scholar 

  4. Gratton, E., 1984, The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry, Appl. Spectrosc. Rev. 20 (1): 55–106.

    Article  Google Scholar 

  5. Gratton, E., Jameson, D. M., and Hall, R. D., 1984, Multifrequency phase and modulation fluorometry, Annu. Rev. Biophys. Bioeng. 13: 105–124.

    Article  CAS  Google Scholar 

  6. Lakowicz, J. R., 1986, Biochemical applications of frequency-domain fluorometry, in Applications of Fluorescence in the Biomedical Sciences, D. Lansing, A. S. Waggoner, F. Lanni, R. F. Murphy, and R. R. Birge (eds.), Alan R. Liss, New York, pp. 225–244.

    Google Scholar 

  7. Bright, F. V., Betts, T. A., and Litwiler, K. S., 1990, Advances in multifrequency phase and modulation fluorescence analysis, Anal. Chem. 21: 389–405.

    CAS  Google Scholar 

  8. Lakowicz, J. R., 1985, Frequency-domain fluorometry for resolution of time-dependent fluorescence emission, Spectroscopy 1: 28–37.

    Google Scholar 

  9. Rabinovich, E. M., O’Brien, M., Srinivasan, B., Elliott, S., Long, X.-C., and Ravinder, K. J., 1998, A compact, LED-based phase fluorimeter-detection system for chemical and biosensor arrays, Proc. SPIE 3258: 2–10.

    Article  CAS  Google Scholar 

  10. Bevington, R R., 1969, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York.

    Google Scholar 

  11. Taylor, J. R., 1982, An Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements, University Science Books, Mill Valley, California.

    Google Scholar 

  12. Lakowicz, J. R., Laczko, G., Cherek, H., Gratton, E., andLimkeman, M., 1984, Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data, Biophys. J. 46: 463–477.

    Article  CAS  Google Scholar 

  13. Gratton, E., Limkeman, M., Lakowicz, J. R., Maliwal, B., Cherek, H., and Laczko, G., 1984, Resolution of mixtures of fluorophores using variable-frequency phase and modulation data, Biophys, J. 46: 479–486.

    Article  CAS  Google Scholar 

  14. Straume, M., Frasier-Cadoret, S. G., and Johnson, M. L., 1991, Least-squares analysis of fluorescence data, in Topics in Fluorescence Spectroscopy, Volume 2, Principles, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 177–239.

    Google Scholar 

  15. Johnson, M. L., 1994, Use of least-squares techniques in biochemistry, Methods Enzymol. 240: 1–22.

    Article  Google Scholar 

  16. Johnson, M. L., and Faunt, L. M., 1992, Parameter estimation by least-squares methods, Methods Enzymol. 210: 1–37.

    Article  CAS  Google Scholar 

  17. Klein, U. K. A., 1984, Picosecond fluorescence decay studied by phase fluorometry and its application to the measurement of rotational diffusion in liquids, Arabian J. Sei. Eng. 9 (4): 327–344.

    CAS  Google Scholar 

  18. Gaviola, Z., 1926, Ein Fluorometer, apparat zur messung von fluo-reszenzabklingungszeiten, Z Phys. 42: 853–861.

    Article  Google Scholar 

  19. Wood, R. W, 1921, The time interval between absorption and emission of light in fluorescence, Pwc. R. Soc. London (A) 99: 362–371.

    Article  CAS  Google Scholar 

  20. Abraham and Lemoine, 1899, C. R. Hebd. Seance Acad. Sei. 129:206, as cited in Ref. 23.

    Google Scholar 

  21. Duschinsky, V. F., 1933, Der zeitliche intensitatsverlauf von intermittierend angeregter resonanzstrahlung, Z Phys. 81: 7–22.

    Article  CAS  Google Scholar 

  22. Szymanowski, W., 1935, Verbesserte fluorometermethode zur messung der abklingzeiten der fluoreszensatrahlung, Z Phys. 95: 440–449.

    Article  CAS  Google Scholar 

  23. Tumerman, L. A., 1941, On the law of decay of luminescence of complex molecules, J. Phys. (USSR) 4: 151–166.

    CAS  Google Scholar 

  24. Maercks, V. O., 1938, Neuartige fluorometer, Z Phys. 109: 685–699.

    Article  CAS  Google Scholar 

  25. Hupfeld, V. H.-H., 1929, Die nachleuchtdauern der J2-, K2, Na2- und Na-resonanzstrahlung, Z Phys. 54: 484–497.

    Article  CAS  Google Scholar 

  26. Schmillen, A., 1953, Abklingzeitmessungen an flussigen und festen losungen mit einem neuen fluorometer, Z Phys.. 135: 294–308.

    Article  CAS  Google Scholar 

  27. Galanin, M. D., 1950, Duration of the excited state of a molecule and the properties of fluorescent solutions, Tr. Fit Inst. Akad. Nauk SSSR 5: 339–386.

    CAS  Google Scholar 

  28. Birks, J. B., and Little, W. A., 1953, Photo-fluorescence decay times of organic phosphors, Proc. Phys. Soc. A66: 921–928.

    Google Scholar 

  29. Resewitz, V. E.-R, and Lippert, E., 1974, Ein neuartiges phasen-fluorometer, Ber. Bunsenges. Phys. Chem. 78: 1227–1229.

    CAS  Google Scholar 

  30. Labhart, V. H., 1964, Eine experimentelle methode zur ermittlung der singulett-triplett-konversionswahrscheinlichkeit und der triplett-spektren von gelosten organischen molekeln messungen an 1,2-ben-zanthracen, Fasciculus S 252: 2279–2288.

    Google Scholar 

  31. Bailey, E. A., and Rollefson, G. K., 1953, The determination of the fluorescence lifetimes of dissolved substances by a phase shift method, J. Chem. Phys. 21: 1315–1326.

    Article  CAS  Google Scholar 

  32. Bonch-Breuvich, A. M., Kazarin, I. M., Molchanov, V. A., and Shirokov, I. V., 1959, An experimental model of a phase fluorometer, Instrum. Exp. Tech. (USSR) 2: 231–236.

    Google Scholar 

  33. Bauer, R. K., and Rozwadawski, M., 1959, A new type of fluorometer. Measurements of decay periods of fluorescence of acridine yellow solutions as a function of concentration, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys. 8: 365–368.

    Google Scholar 

  34. Birks, J. B., and Dyson, D. J., 1961, Phase and modulation fluorometer, J. Sci. Instrum. 38: 282–285.

    Article  Google Scholar 

  35. Muller, A., Lumry, R., and Kokubun, H., 1965, High-performance phase fluorometer constructed from commercial subunits, Rev. Sci. Instrum. 36: 1214–1226.

    Article  CAS  Google Scholar 

  36. Michelbacher, E., 1969, Decay time measurements on pseudo-iso-cyanine by a phase-fluorometer of200 Mc modulation frequency, Z Naturforsch. A 24: 790–796.

    Google Scholar 

  37. Demtroder, W., 1962, Bestimmung von oszillatorenstarken durch lebensdauermessungen der ersten angeregten niveaus fur die elemente Ga, Al, Mg, TI und Na, Z Phys.. 42: 42–55.

    Google Scholar 

  38. Schlag, E. W., and Wessenhoff, H. V., 1969, Direct timing of the relaxation from selected excited states; beta-naphthylamine, J. Chem. Phys. 51: 2508–2514.

    Article  CAS  Google Scholar 

  39. Venetta, B. D., 1959, Microscope phase fluorometer for determining the fluorescence lifetimes of fluorochromes, Rev. Sci. Instrum. 30: 450–457.

    Article  CAS  Google Scholar 

  40. Schaefer, V. W., 1956, Bestimmung der schwingungsrelaxationszeit in CO/N2-gasgemischen aus der analyse des frequenzganges eines ultrarot-gasanalysators, Z Angew. Phys. 19: 55–61.

    Google Scholar 

  41. Spencer, R. D., and Weber, G., 1969, Measurement of subnansecond fluorescence lifetimes with a cross-correlation phase fluorometer, Ann. N.Y. Acad. Sci. 158: 361–376.

    Article  CAS  Google Scholar 

  42. Debye, P., and Sears, F. W., 1932, On the scattering of light by supersonic waves, Proc. Natl. Acad. Sci. U.S.A. 18: 409–414.

    Article  CAS  Google Scholar 

  43. Lakowicz, J. R., 1983, Principles of Fluorescence Spectroscopy, Plenum Press, New York, pp. 76–78.

    Book  Google Scholar 

  44. Hauser, M., and Heidt, G., 1975, Phase fluorometer with a continuously variable frequency, Rev. Sci. Instrum. 46: 470–471.

    Article  CAS  Google Scholar 

  45. Salmeen, I., and Rimal, L., 1977, A phase-shift fluorometer using a laser and a transverse electrooptic modulator for subnanosecond lifetime measurements, Biophys. J. 20: 335–342.

    Article  CAS  Google Scholar 

  46. Menzel, E. R., and Popovic, Z. D., 1978, Picosecond-resolution fluorescence lifetime measuring system with a cw laser and a radio, Rev. Sci. Instrum. 49: 39–44.

    Article  CAS  Google Scholar 

  47. Haar, H.-P, and Hauser, M., 1978, Phase fluorometer for measurement of picosecond processes, Rev. Sci. Instrum. 49: 632–633.

    Article  CAS  Google Scholar 

  48. Gugger, H., and Calzaferri, G., 1979, Picosecond time resolution by a continuous wave laser amplitude modulation technique I: A critical investigation,/Photochem. 13: 21–33.

    Google Scholar 

  49. Gugger, H., and Calzaferri, G., 1980, Picosecond time resolution by a continuous wave laser amplitude modulation technique II: Experimental basis, J. Photochem. 13: 295–307.

    Article  CAS  Google Scholar 

  50. Gugger, H., and Calzaferri, G., 1981, Picosecond time resolution by a continuous wave laser amplitude modulation technique III: Dual-beam luminescence experiment, J. Photochem. 16: 31–41.

    Article  CAS  Google Scholar 

  51. Baumann, J., and Calzaferri, G., 1983, Development of picosecond time-resolved techniques by continuous-wave laser amplitude modulation IV: Systematic errors, J. Photochem. 22: 297–312.

    Article  CAS  Google Scholar 

  52. Baumann, J., and Calzaferri, G., 1983, Development of picosecond time-resolved techniques by continuous-wave V: Elimination of r.f. interference problems, J. Photochem. 23: 387–390.

    CAS  Google Scholar 

  53. Ide, G., Engelborghs, Y., and Persoons, A., 1983, Fluorescence lifetime resolution with phase fluorometry, Rev. Sci. Instrum. 54: 841–844.

    Article  CAS  Google Scholar 

  54. Kaminov, I. P., 1984, An Introduction to Electro-Optic Devices, Academic Press, New York.

    Google Scholar 

  55. Wilson, J., and Hawkes, J. F. B., 1983, Optoelectronics: An Introduction, Prentice/Hall International, Englewood Cliff, New Jersey, p. 445.

    Google Scholar 

  56. Fedderson, B. A., Piston, D. W., and Gratton, E., 1989, Digital parallel acquisition in frequency domain fluorimetry, Rev. Sei. Instrum. 60: 2929–2936.

    Article  Google Scholar 

  57. Alcala, J. R., 1991, Comment on “Digital parallel acquisition in frequency domain fluorometry,” Rev. Sei. Instrum. 62: 1672–1673.

    Article  CAS  Google Scholar 

  58. Barbieri, B., De Piccoli, F., and Gratton, E., 1989, Synthesizers’ phase noise in frequency-domain fluorometry, Rev. Sei. Instrum. 60: 3201–3206.

    Article  CAS  Google Scholar 

  59. Levy, R., Guignon, E. F., Cobane, S., St. Louis, E., and Fernandez, S. M., 1997, Compact, rugged and inexpensive frequency-domain fluorometer, Proc. SPIE 2980: 81–89.

    Google Scholar 

  60. Lakowicz, J. R., Cherek, H., and Baiter, A., 1981, Correction of timing errors in photomultiplier tubes used in phase-modulation fluorometry, J. Biochem. Biophys. Methods 5: 131–146.

    Article  CAS  Google Scholar 

  61. Berndt, K., Dürr, H., and Palme, D., 1983, Picosecond phase fluorometry and color delay error, Opt. Commun. 47 (5): 321–323.

    Article  CAS  Google Scholar 

  62. Baumann, J., Calzaferri, G., Forss, L., and Hungentobler, Th., 1985, Wavelength-dependent fluorescence decay: An investigation by multiple-frequency picosecond phase fluorometry, J. Photochem. 28: 457–473.

    Article  CAS  Google Scholar 

  63. Pouget, J., Mugnier, J., and Valeur, B., 1989, Correction of systematic phase errors in frequency-domain fluorometry, J. Phys. E: Sei. Instrum. 22: 855–862.

    Article  CAS  Google Scholar 

  64. Barrow, D. A., and Lentz, B. R., 1983, The use of isochronal reference standards in phase and modulation fluorescence lifetime measurements, J. Biochem. Biophys. Methods 7: 217–234.

    Article  CAS  Google Scholar 

  65. Thompson, R. B., and Gratton, E., 1988, Phase fluorometric method for determination of standard lifetimes, Anal. Chem. 60: 670–674.

    Article  CAS  Google Scholar 

  66. Lakowicz, J. R., Jayaweera, R., Joshi, N., and Gryczynski, I., 1987, Correction for contaminant fluorescence in frequency-domain fluorometry, Anal. Biochem. 160: 471–479.

    Article  CAS  Google Scholar 

  67. Reinhart, G. D., Marzola, P., Jameson, D. M., and Gratton, E., 1991, A method for on-line background subtraction in frequency domain fluorometry, J. Fluoresc. 1 (3): 153–162.

    Article  CAS  Google Scholar 

  68. Gryczynski, I., and Malak, H., unpublished observations.

    Google Scholar 

  69. Gryczynski, I., unpublished observations.

    Google Scholar 

  70. Lakowicz, J. R., 1989, Principles of frequency-domain fluorescence spectroscopy and applications to protein fluorescence, in Cell Structure and Function by Microspectrofluorometry, E. Kohen and J. G. Hirschberg (eds.), Academic Press, New York, pp. 163–184.

    Google Scholar 

  71. Manzini, G., Barcellona, M. L., Avitabile, M., and Quadrifoglio, F., 1983, Interaction of diamidino-2-phenylindole (DAPI) with natural and synthetic nucleic acids, Nucleic Acids Res. 11: 8861–8876.

    Article  CAS  Google Scholar 

  72. Cavatorta, P., Masotti, L., and Szabo, A. G., 1985, A time-resolved florescence study of 4’,6-diamidino-2-phenylindole dihydrochloride binding to polynucleotides, Biophys. Chem. 22: 11–16.

    Article  CAS  Google Scholar 

  73. Tanious, F. A., Veal, J. M., Buczak, H., Ratmeyer, L. S., and Wilson, W. D., 1992, DAPI (4\6-diamidino-2-phenylindole) binds differently to DNA and RNA: Minor-groove binding at AT sites and intercalation at AU sites, Biochemistry 31: 3103–3112.

    Article  CAS  Google Scholar 

  74. Barcellona, M. L., and Gratton, E., 1989, Fluorescence lifetime distributions of DNA-4’,6-diamidino-2-phenylindole complex, Bio-chim. Biophys. Acta 993: 174–178.

    Article  CAS  Google Scholar 

  75. Barcellona, M. L., and Gratton, E., 1990, The fluorescence properties of a DNA probe, Eur. Biophys. J. 17: 315–323.

    Article  CAS  Google Scholar 

  76. Lakowicz, J. R., Szmacinski, H., Nowaczyk, N., and Johnson, M. L., 1992, Fluorescence lifetime imaging of calcium using quin-2, Cell Calcium 13: 131–147.

    Article  CAS  Google Scholar 

  77. Miyoshi, N., Hara, K., Kimura, S., Nakanishi, K., and Fukuda, M., 1991, A new method of determining intracellular free Ca2+ concentration using Quin-2 fluorescence, Photochem. Photobiol. 53: 415–418.

    Article  CAS  Google Scholar 

  78. Hirshfield, K. M., Toptygin, D., Packard, B. S, and Brand, L., 1993, Dynamic fluorescence measurements of two-state systems: Applications to calcium-chelating probes, Anal. Biochem. 209: 209–218.

    Article  CAS  Google Scholar 

  79. Illsley, N. P., and Verkman, A. S., 1987, Membrane chloride transport measured using a chloride-sensitive fluorescent probe, Biochemistry 26: 1215–1219.

    Article  CAS  Google Scholar 

  80. Verkman, A. S., 1990, Development and biological applications of chloride-sensitive fluorescent indicators, Am. J. Physiol. 253:C375- C388.

    Google Scholar 

  81. Verkman, A. S., Sellers, M. C., Chao, A. C., Leung, T., and Ketcham, R., 1989, Synthesis and characterization of improved chloride-sensitive fluorescent indicators for biological applications, Anal. Biochem. 178: 355–361.

    Article  CAS  Google Scholar 

  82. Szmacinski, H., and Lakowicz, J. R., unpublished observations.

    Google Scholar 

  83. Lakowicz, J. R. (ed.), 1997, Topics in Fluorescence Spectroscopy, Volume 5 Nonlinear and Two-Photon Induced Fluorescence Plenum Press, New York, 544 pp.

    Google Scholar 

  84. Dattelbaum, J. D., Castellano, F. N., Gryczynski, I., and Lakowicz, J. R., 1998, Two-photon spectroscopic properties of a mutant green fluorescent protein, Biphysical Society Meeting, March, 1998, Kansas City, Missouri.

    Google Scholar 

  85. Swaminathan, R., Hoang, C. P., and Verkman, A. S., 1997, Pho-tobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: Cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion, Biophys. J. 72: 1900–1907.

    Article  CAS  Google Scholar 

  86. Kusba, J., and Lakowicz, J. R., 1994, Diffusion-modulated energy transfer and quenching: Analysis by numerical integration of diffusion equation in Laplace space, Methods Enzymol. 240: 216–262.

    Article  CAS  Google Scholar 

  87. Lakowicz, J. R., Cherek, H., Gryczynski, I., Joshi, N., and Johnson, M. L., 1987, Analysis of fluorescence decay kinetics measured in the frequency domain using distributions of decay times, Biophys. Chem. 28: 35–50.

    Article  CAS  Google Scholar 

  88. Alcala, J. R., Gratton, E., and Prendergast, F. G., 1987, Resolvability of fluorescence lifetime distributions using phase fluorometry, Biophys. J. 51: 587–596.

    Article  CAS  Google Scholar 

  89. Foguel, D., Chaloub, R. M., Silva, J. L., Crofts, A. R., and Weber, G., 1992, Pressure and low temperature effects on the fluorescence emission spectra and lifetimes of the photosynthetic components of cyanobacteria, Biochem. J. 63: 1613–1622.

    CAS  Google Scholar 

  90. Alcala, J. R., Gratton, E., and Prendergast, F. G., 1987, Fluorescence lifetime distributions in proteins, Biophys. J. 51: 597–604.

    Article  CAS  Google Scholar 

  91. Alcala, J. R., Gratton, E., and Prendergast, F. G., 1987, Interpretation of fluorescence decays in proteins using continuous lifetime distributions, Biophys. J. 51: 925–936.

    Article  CAS  Google Scholar 

  92. Lakowicz, J. R., Gryczynski, I., Wiczk, W., and Johnson, M. L., 1994, Distributions of fluorescence decay times for synthetic melit-tin in water-methanol mixtures and complexed with calmodulin, troponin C, and phospholipids, J. Fluoresc. 4 (2): 169–177.

    Article  CAS  Google Scholar 

  93. Gryczynski, I., Wiczk, W., Inesi, G., Squier, T., and Lakowicz, J. R., 1989, Characterization of the tryptophan fluorescence from sarcoplasmic reticulum adenosinetriphosphatase by frequency-domain fluorescence spectroscopy, Biochemistry 28: 3490–3498.

    Article  CAS  Google Scholar 

  94. Visser, A. J. W. G., and van Hoek, A., 1981, The fluorescence decay of reduced nicotinamides in aqueous solution after excitation with a uv-mode locked Ar ion laser, Photochem. Photobiol. 33: 35–40.

    Article  CAS  Google Scholar 

  95. Merkelo, H. S., Hartman, S. R., Mar, T., Singhai, G. S., and Govindjee, 1969, Mode-locked lasers: Measurements of very fast radiative decay in fluorescent systems, Science 164: 301–303.

    Article  CAS  Google Scholar 

  96. Gratton, E., and Lopez-Delgado, R., 1980, Measuring fluorescence decay times by phase-shift and modulation techniques using the high harmonic content of pulsed light sources, Nuovo Cimento B56:1 10–124.

    Google Scholar 

  97. Gratton, E., Jameson, D. M., Rosato, N., and Weber, G., 1984, Multifrequency cross-correlation phase fluorometer using synchrotron radiation, Rev. Sei. Instrum. 55: 486–494.

    Article  CAS  Google Scholar 

  98. Gratton, E., and Delgado, R. L., 1979, Use of synchrotron radiation for the measurement of fluorescence lifetimes with subpicosecond resolution, Rev. Sei. Instrum. 50: 789–790.

    Article  CAS  Google Scholar 

  99. Berndt, K., Duerr, H., and Palme, D., 1982, Picosecond phase fluorometry by mode-locked CW lasers, Opt. Commun. 42: 419–422.

    Article  CAS  Google Scholar 

  100. Gratton, E., and Barbieri, B., 1986, Multifrequency phase fluorometry using pulsed sources: Theory and applications, Spectroscopy 1 (6): 28–36.

    CAS  Google Scholar 

  101. Lakowicz, J. R., Laczko, G., and Gryczynski, I., 1986, 2-GHz frequency-domain fluorometer, Rev. Sei. Instrum. 57: 2499–2506.

    Google Scholar 

  102. Laczko, G., Gryczynski, I., Gryczynski, Z., Wiczk, W., Malak, H., and Lakowicz, J. R., 1990, A 10-GHz frequency-domain fluorometer, Rev. Sei. Instrum. 61: 2331–2337.

    Article  CAS  Google Scholar 

  103. Lakowicz, J. R., Laczko, G., Gryczynski, I., Szmacinski, H., and Wiczk, W, 1989, Frequency-domain fluorescence spectroscopy: Principles, biochemical applications and future developments, Ber. Bunsenges. Phys. Chem. 93: 316–327.

    Article  CAS  Google Scholar 

  104. Lakowicz, J. R., Laczko, G., Gryczynski, I., Szmacinski, H., and Wiczk, W., 1988, Gigahertz frequency domain fluorometry: Resolution of complex decays, picosecond processes and future developments, J. Photochem. Photobiol. B: Biol. 2: 295–311.

    Article  CAS  Google Scholar 

  105. Berndt, K., Durr, H., and Palme, D., 1985, Picosecond fluorescence lifetime detector, Opt. Commun. 55 (4): 271–276.

    Article  CAS  Google Scholar 

  106. Berndt, K., 1987, Opto-electronic high-frequency cross-correlation using avalanche photodiodes, Measurement 5 (4): 159–166.

    Article  Google Scholar 

  107. Berndt, K., Klose, E., Schwarz, P., Feller, K.-H, and Faßler, D., 1984, Time resolved fluorescence spectroscopy of cyanine dyes, Z Phys. Chem. 265: 1079–1086.

    CAS  Google Scholar 

  108. Berndt, K., Durr, H., and Feller, K.-H., 1987, Time resolved fluorescence spectroscopy of cyanine dyes, Z Phys. Chem. 268: 250–256.

    CAS  Google Scholar 

  109. Lakowicz, J. R., Gryczynski, I., Laczko, G., and Gloyna, D., 1991, Picosecond fluorescence lifetime standards for frequency-and time-domain fluorescence, J. Fluoresc. 1 (2): 87–93.

    Article  CAS  Google Scholar 

  110. Gryczynski, I., Szmacinski, H., Laczko, G., Wiczk, W., Johnson, M. L., Kusba, J., and Lakowicz, J. R., 1991, Conformational differences of oxytocin and vasopressin as observed by fluorescence anisotropy decays and transient effects in collisional quenching of tyrosine fluorescence, J. Fluoresc. 1 (3): 163–176.

    Article  CAS  Google Scholar 

  111. Vos, R., Strobbe, R., and Engelborghs, Y., 1997, Gigahertz phase fluorometry using a fast high-gain photomultiplier, J. Fluoresc. 7 (1): 33S–35S.

    CAS  Google Scholar 

  112. Berndt, K. W, Gryczynski, I., and Lakowicz, J. R., 1990, Phase-modulation fluorometry using a frequency-doubled pulsed laser diode light source, Rev. Sei. Instrum. 61: 1816–1820.

    Article  CAS  Google Scholar 

  113. Thompson, R. B., Frisoli, J. K., and Lakowicz, J. R., 1992, Phase fluorometry using a continuously modulated laser diode, Anal. Chem. 64: 2075–2078.

    Article  CAS  Google Scholar 

  114. Sipior, J., Carter, G. M., Lakowicz, J. R., and Rao, G., 1996, Single quantum well light emitting diodes demonstrated as excitation sources for nanosecond phase-modulation fluorescence lifetime measurements, Rev. Sci. Instrum. 67: 3795–3798.

    Article  CAS  Google Scholar 

  115. Sipior, J., Carter, G. M., Lakowicz, J. R., and Rao, G., 1997, Blue light emitting diode demonstrated as an ultraviolet excitation source for nanosecond phase-modulation fluorescence lifetime measurements, Rev. Sci. Instrum. 68: 2666–2670.

    Article  CAS  Google Scholar 

  116. Fantini, S., Franceschini, M. A., Fishkin, J. B., Barbieri, B., and Gratton, E., 1994, Quantitative determination of the absorption spectra of chromophores in strongly scattering media: A light-emitting diode based technique, Appl. Opt. 33: 5204–5213.

    Article  CAS  Google Scholar 

  117. Berndt, K. W, and Lakowicz, J. R., 1992, Electroluminescent lamp-based phase fluorometer and oxygen sensor, Anal. Biochem. 201: 319–325.

    Article  CAS  Google Scholar 

  118. Morgan, C. G., Hua, Y., Mitchell, A. C., Murray, J. G., and Board-man, A. D., 1996, A compact frequency domain fluorometer with a directly modulated deuterium light source, Rev. Sci. Instrum. 67: 41–47.

    Article  Google Scholar 

  119. Holavanahali, R., Romauld, M., Carter, G. M., Rao, G., Sipior, J., Lakowicz, J. R., and Bierlein, J. D., 1996, Directly modulated diode laser frequency doubled in a KTP waveguide as an excitation source for C02 and 02 phase fluorometric sensors, J. Biomed. Opt. 1: 124–130.

    Article  Google Scholar 

  120. Guo, X.-Q., Castellano, F. N., Li, L., Szmacinski, H., and Lakowicz, J. R., 1997, A long-lived, highly luminescent Re(I) metal-ligand complex as a biomolecular probe, Anal. Biochem. 254: 179–186.

    Article  CAS  Google Scholar 

  121. Szmacinski, H., and Lakowicz, J. R., 1993, Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry, Anal. Chem. 65: 1668–1674.

    Article  CAS  Google Scholar 

  122. Thompson, R. B., and Lakowicz, J. R., 1993, Fiber optic pH sensor based on phase fluorescence lifetimes, Anal. Chem. 65: 853–856.

    Article  CAS  Google Scholar 

  123. O’Keefe, G., MacCraith, B. D., McEvoy, A. K., McDonagh, C. M., and McGilp, J. F., 1995, Development of a LED-based phase fluorimetric oxygen sensor using evanescent wave excitation of a sol-gel immobilized gel, Sensors Actuat. 29: 226–230.

    Article  Google Scholar 

  124. Lippitsch, M. E., Pasterhofer, J., Leiner, M. J. P., and Wolfbeis, O. S., 1988, Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier, Anal. Chim. Acta 205: 1–6.

    Article  CAS  Google Scholar 

  125. Sipior, J., Randers-Eichhorn, L., Lakowicz, J. R., Carter, G. M., and Rao, G., 1996, Phase fluorometric optical carbon dioxide gas sensor for fermentation off-gas monitoring, Biotechnol. Prog. 12: 266–271.

    Article  CAS  Google Scholar 

  126. Cobb, W. T., and McGown, L. B., 1987, Phase-modulation fluorometry for on-line liquid chromatographic detection and analysis of mixtures of benzo(fc)fluoranthene and benzo(fc)fluoran-thene, Appl. Spectrosc. 41: 1275–1279.

    Article  CAS  Google Scholar 

  127. Cobb, W. T., and McGown, L. B., 1989, Multifrequency phase-modulation fluorescence lifetime determinations on-the-fly in HPLC, Appl. Spectrosc. 43: 1363–1367.

    Article  CAS  Google Scholar 

  128. Cobb, W. T., Nithipatikom, K., and McGown, L. B., 1988, Multi-component detection and determination of polycyclic aromatic hydrocarbons using HPLC and a phase-modulation spec-trofluorometer, Special Technical Publication, American Society for Testing and Materials, Vol. 1009, pp. 12–25.

    Google Scholar 

  129. Szmacinski, H., and Lakowicz, J. R., 1994, Lifetime-based sensing, in Topics in Fluorescence Spectroscopy, Vol. 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 295–334.

    Google Scholar 

  130. Lakowicz, J. R., Jayaweera, R., Szmacinski, H., and Wiczk, W., 1990, Resolution of multicomponent fluorescence emission using frequency-dependent phase angle and modulation spectra, Anal. Chem. 62: 2005–2012.

    Article  CAS  Google Scholar 

  131. Lakowicz, J. R., Jayaweera, R., Szmacinski, H., and Wiczk, W., 1989, Resolution of two emission spectra for tryptophan using frequency-domain phase-modulation spectra, Photochem. Photo-biol. 50: 541–546.

    Article  CAS  Google Scholar 

  132. Kilin, S. F., 1962, The duration of photo-and radioluminescence of organic compounds, Opt. Spectwsc. 12: 414–416.

    Google Scholar 

  133. Jameson, D. M., Gratton, E., and Hall, R. D., 1984, The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry, Appl. Spectrosc. Rev. 20(1):55-106.

    Google Scholar 

  134. Ware, W. R., 1971, Transient luminescence measurements, in Creation and Detection of the Excited State, A. A. Lamola (ed.), Marcel Dekker, New York, pp. 213–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakowicz, J.R. (1999). Frequency-Domain Lifetime Measurements. In: Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3061-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3061-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3063-0

  • Online ISBN: 978-1-4757-3061-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics