Skip to main content

Least-Squares Method of Alignment Using Markers

  • Chapter
Electron Tomography

Abstract

An intermediate problem arises in the tomographic reconstruction of an object from a series of electron microscope exposures, namely that of determining the relationship between the axes of the individual digitized images, the tilt axis of the microscope, and a hypothetical internal coordinate system of the specimen. Accurate resampling of the tilt series images onto a common coordinate system is an essential prerequisite for any tomographic reconstruction algorithm. The lack of an immediately available common system of coordinates results from the microscope goniometer not being truly eucentric at high resolution. Thus, the goniometer control system is unable to provide the user with suffiicient control at a subpixel level as the specimen is tilted in the microscope, and the precise relationship between the microscope coordinate system and the specimen coordinate system is lost. In the case of photographic image recording, further inaccuracies can arise from the positioning of the plates in their holders or on the microdensitometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berriman, J., Bryan, R. K., Freeman, R., and Leonard, K. R. (1984). Methods for specimen thickness determination in electron microscopy. Ultramicroscopy 13:351–364.

    Article  PubMed  CAS  Google Scholar 

  • Dengler, J. (1989). A multi-resolution approach to 3D reconstruction from an electron microscope tilt series solving the alignment problem without gold particles. Ultramicroscopy 30:337–348.

    Article  Google Scholar 

  • Fletcher, R. and Powell, M. J. D. (1963). A rapidly convergent descent method for minimization. Comput. J. 6:163–168.

    Article  Google Scholar 

  • Frank, J. (1980). The role of correlation techniques in computer image processing, in Computer Processing of Electron Microscope Images (P. W. Hawkes, ed.). Springer-Verlag, New York.

    Google Scholar 

  • Frank, J., McEwen, B. F., Radermacher, M., Turner, J. N., and Rieder, C. L. (1987). Three-dimensional tomographic reconstruction in high voltage electron microscopy. J. Electron Microsc. Tech. 6:193–205.

    Article  Google Scholar 

  • Guckenberger, R. (1982). Determination of a common origin in the micrographs of tilt series in threedimensional electron microscopy. Ultramicroscopy 9:167–174.

    Article  Google Scholar 

  • Hart, R. G. (1968). Electron microscopy of unstained biological material: The polytropic montage. Science 159:1464–1467.

    Article  PubMed  CAS  Google Scholar 

  • Hoppe, W. and Hegerl, R. (1980). Three-dimensional structure determination by electron microscopy (nonperiodic structures), in Computer Processing of Electron Microscope Images (P. W. Hawkes, ed.). Springer-Verlag, New York, pp. 127–185.

    Chapter  Google Scholar 

  • Jing, Z. and Sachs, F. (1991). Alignment of tomographic projections using an incomplete set of fiiducial markers. Ultramicroscopy 35:37–43.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, M. C. (1983). Alignment of images for three-dimensional reconstruction of non-periodic objects. Proc. Electron Microsc. Soc. S. Afr. 13:19–20.

    Google Scholar 

  • Lawrence, M. C., Jaffer, M., and Sewell, B. T. (1989). The application of the maximum entropy method to electron microscope tomography. Ultramicroscopy 31:285–301.

    Article  PubMed  CAS  Google Scholar 

  • Luther, P. K., Lawrence, M. C., and Crowther, R. A. (1988). A method for monitoring the collapse of plastic sections as a function of electron dose. Ultramicroscopy 24:7–18.

    Article  PubMed  CAS  Google Scholar 

  • Olins, A. L., Olins, D. E., Levy, H. A., Durfee, R. C., Margle, S. M., Tinnel, E. P., Hingerty, B. E., Dover, S. D., and Fuchs, H. (1984). Modeling Balbiani ring gene transcription with electron microscopy tomography. Eur. J. Cell Biol. 35:129–142.

    PubMed  CAS  Google Scholar 

  • Olins, D. E., Olins, A. L., Levy, H. A., Durfee, R. C., Margle, S. M., Tinnel, E. P., and Dover, S. D. (1983). Electron microscope tomography: Transcription in three dimensions. Science 220:498–500.

    Article  PubMed  CAS  Google Scholar 

  • Skoglund, U., Andersson, K., Strandberg, B., and Daneholt, B. (1986). Three-dimensional structure of a specific pre-messenger RNP particle established by electron microscope tomography. Nature 319:560–564.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lawrence, M.C. (1992). Least-Squares Method of Alignment Using Markers. In: Frank, J. (eds) Electron Tomography. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2163-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2163-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2165-2

  • Online ISBN: 978-1-4757-2163-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics