Skip to main content

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 2))

Abstract

The subject “energy deposition” of radiation has several theoretical aspects, which could be classified e.g. according to the scale or object of interest as

  • macroscopic (e.g. dose distribution in extended bodies or an organ),

  • microscopic (e.g. in a mammalian cell or a makromolecule),

  • radiation field related (e.g. radiation shielding, differential energy loss), and

  • target related (e.g. yields of chemically reactive species, induction of mutations).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baum, J.W. , Varma, M.N., Wingate, C.L., Paretzke, H.G., and Kuehner, A.V., 1973, Nanometer Dosimetry of heavy ion tracks, BNL-Report 18219

    Google Scholar 

  • Berger, M.J., 1974, Some new transport calculations on the deposition of energy in biological materials by low-energy electrons, in : “Fourth Symposium on Microdosimetry”, Booz, J., Ebert, H.G., Eickel, R., and Waker, A., eds., CEC, Brussels, EUR 5122

    Google Scholar 

  • Combecher, D., Kollerbaur, J., Leuthold, H., Paretzke, H.G., and Burger, G., 1974, Energy spectra of degraded electrons in water vapour and in carbon, loc. cit. Paretzke (1979 a)

    Google Scholar 

  • Fano, U., 1979 , The formulation of track structure theory, in : “Charged Particle Tracks in Solids and Liquids”, Adams, G.E., Bewley, D.K., and Boag, J.W., eds., The Institute of Physics, London.

    Google Scholar 

  • Hamm, R.N., Wright, H.A., Ritchie, R.H., Turner, J.E., and Turner, T.P., Monte Carlo calculation of transport of electrons through liquid water, loc. cit. Paretzke (1975).

    Google Scholar 

  • Harder, D., 1964, Physikalische Grundlagen zur relativen biologischen Wirksamkeit verschiedener Strahlenarten, Biophysik, 1:225.

    Article  Google Scholar 

  • Katz, R., Ackerson, B., Homayoonfar, M., and Sharma, S., 1971, Inactivation of cells by heavy ion bombardment, Radiat. Res. 47:402.

    Article  Google Scholar 

  • Kim, Y.-K., 1975, Energy distribution of Secondary Electrons, Radiat. Res. 64: 96

    Article  Google Scholar 

  • Kim, Y.-K., and Inokuti, M., 1973, Slow electrons ejected from He by fast charged particles, Phys. Rev. A 7:1257.

    Article  ADS  Google Scholar 

  • Kutcher, G.J. and Green, A.E.S., 1976, Energy deposition in liquid water, Radiat. Res. 67: 408

    Article  Google Scholar 

  • Lea, D.E., 1944, “Actions of Radiation on Living Cells”, University Press, Cambridge.

    Google Scholar 

  • Meyer, A., and Murray, R.B., 1962. Effect of Energetic Secondary Electrons on the Scintillation Process in Alkali Halide Crystals, Phys. Rev., 128:98.

    Article  ADS  Google Scholar 

  • Olivero, J.J., Stagat, R.W., and Green, A.E.S., 1972, Electron deposition in water Vapor with atmospheric Applications, J. Geophys. Res. 77:4797

    Google Scholar 

  • Paretzke, H.G., 1974, Comparison of track structure calculations with experimental results, loc. cit. Berger (1974)

    Google Scholar 

  • Paretzke, H.G., 1975, An Appraisal of the Relative Importance for Radiobiology of Effects of Slow Electrons, in: “Fifth Symposium on Microdosimetry”, Booz, J., Ebert, H.G., and Smith, B.G.R., eds., Comm. Europ. Communities, Brussels, EUR 5452.

    Google Scholar 

  • Paretzke, H.G., 1979 a, On Limitations of Classical Microdosimetry and Advantages of Track Structure Analysis for Radiation Biology, in: “Sixth Symposium on Microdosimetry”, Booz, J., and Ebert, H.G., eds., Harwood Academic Publishers Ltd., Brussels.

    Google Scholar 

  • Paretzke, H.G., 1979 b, Track Structure calculations and their accuracy, 6th Int. Congr. on Radiat. Res., Tokyo, in press.

    Google Scholar 

  • Platzman, R.L., 1967, Energy Spectrum of Activations in the Action of Ionizing Radiation, in : “Radiation Research, Proceed. of the 3rd Intern. Congress”, Silini, G., ed., Cortina d Ampezzo

    Google Scholar 

  • Terrisol, M., and Patau, J.P., 1974, Simulation du transport d électrons d énergie inférieure à un keV par une méthode de Monte-Carlo, loc. cit. Berger (1974).

    Google Scholar 

  • Varma, M.N., Paretzke, H.G., Baum, J.W., Lyman, J.T., and Howard, J., 1975, Dose as a function of radial distance from a 930 MeV He-4 ion beam, BNL-Report 20476 R

    Google Scholar 

  • Wilson, W.E., Toburen, L.H., and Paretzke, H.G., Calculation of energy deposition spectra in small gaseous sites and its applicability to condensed phase, loc. cit. Paretzke (1979 a).

    Google Scholar 

  • Wingate, C.L., and Baum, J.W., 1967, Micro-radial distribution of dose and LET for alpha and proton beams, BNL-Report 14767.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Paretzke, H.G. (1980). Advances in Energy Deposition Theory. In: Thomas, R.H., Perez-Mendez, V. (eds) Advances in Radiation Protection and Dosimetry in Medicine. Ettore Majorana International Science Series, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1715-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1715-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1717-4

  • Online ISBN: 978-1-4757-1715-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics