Skip to main content

Plant Evolution in Extreme Environments

  • Chapter
Ecological Genetics and Evolution

Abstract

Extreme habitats have a fascination of their own. They are occupied by only a few very characteristic species, and they are easy to recognize ecologically and spatially. In extreme environments a single physical factor is usually dominating and other factors subsidiary. This makes it easy to understand what is going on, and to define the intensity of the factor. Extreme habitats are so distinctive that it is also easy to see where they begin and end. Because of this they have important advantages for the study of evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard R.W. & Hansche P. E. (1964) Some parameters of population variability and their implications in plant breeding. Adv. Agron. 16, 281–325.

    Article  Google Scholar 

  • Antonovics J. (1968) Evolution in closely adjacent plant populations. V. Evolution of self fertility. Heredity 23, 219–238.

    Article  Google Scholar 

  • Antonovics J., Bradshaw A.D. & Turner R.G. (1971) Heavy metal tolerance in plants. Adv. Ecol. Res. 7 (in press).

    Google Scholar 

  • Aston J. L. & Bradshaw A. D. (1966) Evolution in closely adjacent plant populations. II. Agrostis stolonifera in maritime habitats. Heredity 21, 649–664.

    Article  Google Scholar 

  • Bateman A. J. (1947) Contamination in seed crops. III. Relation with isolation distance. Heredity 1, 303–336.

    Article  Google Scholar 

  • Beard D. E. & Hollowell E. A. (1952) The effect on performance when seed of forage crop varieties is grown under different environmental conditions. Proc. 6th Int. Grassl. Cong. 860-866.

    Google Scholar 

  • Bradshaw A. D. (1952) Populations of Agrostis tenuis resistant to lead and zinc poisoning. Nature, Lond. 169, 1098.

    Article  CAS  Google Scholar 

  • Bradshaw A. D. (1960) Population differentiation in Agrostis tenuis Sibth. III. Populations in varied environments. New Phytol. 59, 92–103.

    Article  Google Scholar 

  • Bradshaw A. D. (1965) Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 31, 115–155.

    Google Scholar 

  • Bradshaw A. D. (1967) An ecologist’s viewpoint. In ‘Ecological Aspects of the Mineral Nutrition of Plants’ I. H. Rorison (ed.), Brit. Ecol. Soc. Symp. 9, 415-427.

    Google Scholar 

  • Bradshaw A. D., McNeilly T. S. & Gregory R. P. G. (1965) Industrialization, evolution and the development of heavy metal tolerance in plants. In ‘Ecology and the Industrial Society’. Brit. Ecol. Soc. Symp.5, 327–3

    Google Scholar 

  • Charles A. H. (1961) Differential survival of cultivars of Lolium, Dactylis and Phleum. J. Br. Grassld Soc. 16, 69–75.

    Article  Google Scholar 

  • Clausen J. & Hiesey W.M. (1958) Experimental studies on the nature of species. IV. Genetic structure of ecological races. Carnegie Inst. Washington Publ. 615, 312 pp.

    Google Scholar 

  • Clausen J., Keck D. D. & Hiesey W. M. (1948) Experimental studies on the nature of species. III. Environmental responses of climatic races of Achillea. Carnegie Inst. Washington Publ. 581, 129 pp.

    Google Scholar 

  • Cooper J. P. (1960) Selection for production characters in ryegrass. Proc. 8th Int. Grassld. Cong. 41-44.

    Google Scholar 

  • Ehrendorfer F. (1953) Okologisch-geographische Mikro-Differenzierung einer Population von Galium pumilum Murr, s.str. Osterreich. Bot. Z. 100, 616–638.

    Article  Google Scholar 

  • Ford E. B. (1964) Ecological Genetics. Methuen, London, 335 pp.

    Google Scholar 

  • Gill J. J. B. & Walker S. (1971) Studies on Cytisus scoparius (L) Wimmer with particular reference to the prostarate forms. Watsonia, in press.

    Google Scholar 

  • Gregor J. W. (1930) Experiments on the genetics of wild populations, Plantago maritima. J. Genet.22, 15–25.

    Article  Google Scholar 

  • Gregor J. W. (1946) Ecotypic differentiation. New Phytol. 45, 254–270.

    Article  Google Scholar 

  • Gregory R. P. G. & Bradshaw A. D. (1965) Heavy metal tolerance in populations of Agrostis tenuis Sibth. and other grasses. New Phytol. 64, 131–143.

    Article  CAS  Google Scholar 

  • Harberd D. J. (1961) Observations on population structure and longevity of Festuca rubra L. New Phytol. 60, 184–206.

    Article  Google Scholar 

  • Harper J. L. (1967) A Darwinian approach to plant ecology. J. Ecol. 55, 247–270.

    Article  Google Scholar 

  • Hodgson M. B. (1969) Mercury resistance in ship-borne Enteromorpha. Hons. thesis, Dept. Botany, Univ. Liverpool.

    Google Scholar 

  • Hosgood S. M. W. & Parsons P. A. (1967) The exploitation of genetic heterogeneity among founders of laboratory populations of Drosophila prior to directional selection. Experientia 23, 1–5.

    Article  Google Scholar 

  • Jain S. K. & Bradshaw A. D. (1966) Evolutionary divergence in adjacent plant populations. I. The evidence and its theoretical analysis. Heredity 21, 407–441.

    Article  Google Scholar 

  • Jones K. J. (1958) Cytotaxonomic studies in Holcus. I. The chromosome complex in Holcus mollis L. New Phytol. 57, 191–210.

    Article  Google Scholar 

  • Jowettd. (1958) Population of Agrostis spp. tolerant to heavy metals. Nature, Lond. 182, 816–817.

    Article  Google Scholar 

  • Kemp W. B. (1937) Natural selection within plant species as exemplified in a permanent pasture. J. Hered. 28, 329–333.

    Article  Google Scholar 

  • Khan M. S. I. (1969) The process of evolution of heavy metal tolerance in Agrostis tenuis and other grasses. M. Sc. Thesis, University of Wales.

    Google Scholar 

  • Lee B.T.O. & Parsons P. A. (1968) Selection, prediction and response. Biol. Rev. 43, 139–174.

    Article  PubMed  CAS  Google Scholar 

  • Legro R. A. H. (1965) Delphinium breeding. In ‘Genetics Today,’ nth Int. Cong. Genet. 2, li-lv, 1963. Pergamon Press, Oxford.

    Google Scholar 

  • Lewontin R. C. (1965) Selection for colonizing ability. In ‘The Genetics of Colonizing Species’, H. G. Baker & G. L. Stebbins (eds.), pp. 79–94. Academic Press, New York.

    Google Scholar 

  • McNeilly T. (1966) The evolution of copper tolerance in Agrostis. Ph.D. thesis, Univ. Wales.

    Google Scholar 

  • McNeilly T. (1968) Evolution in closely adjacent plant populations. III. Agrostis tenuis on a small copper mine. Heredity 23, 99–108.

    Article  Google Scholar 

  • McNeilly T. & Antonovics J. (1968) Evolution in closely adjacent plant populations. IV. Barriers to gene flow. Heredity 23, 205–218.

    Article  Google Scholar 

  • McNeilly T. & Bradshaw A. D. (1968) Evolutionary processes in populations of copper tolerant Agrostis tenuis Sibth. Evolution, Lancaster, Pa. 22, 108–118.

    Article  CAS  Google Scholar 

  • Nicolls O.W., Provan D. M. J., Cole M. M. & Tooms J. S. (1965) Geobotany and geochemistry in mineral exploration in the Dugald River Area, Cloncurry District, Australia. Trans. Instn. Min. Metall. 74, 695–799.

    CAS  Google Scholar 

  • Prat S. (1934) Die Erblichkeit der Resistenz gegen Kupfer. Ber. dt. bot. Ges. 52, 65–67.

    CAS  Google Scholar 

  • Reilly R., Chapman V. & Johnson R. (1968) Introduction of yellow rust resistance of Aegilops comosa in wheat by genetically induced homeologous recombination. Nature, Lond. 217, 383–384.

    Article  Google Scholar 

  • Russell G. & Morris P. (1970) Copper tolerance in the marine fouling alga Ectocarpus siliculosus. Nature, Lond.228, 288–2

    Article  CAS  Google Scholar 

  • Skelton M. (1969) Copper tolerance in ship-borne Ectocarpus siliculosus. Hons. thesis, Dept. Botany, Univ. Liverpool.

    Google Scholar 

  • Snaydon R.W. (1970) Rapid population differentiation in a mosaic environment. I. The response of Anthoxanthum odoratum populations to soil. Evolution 24, 257–269.

    Article  PubMed  CAS  Google Scholar 

  • Stebbins J. L. (1950) Variation and Evolution in Plants. Columbia Univ. Press, New York, 643 pp.

    Google Scholar 

  • Sylven N. (1937) The influence of climatic conditions on type composition. Imp. Bureau Plant Genetics, Herbage Bull. 21, 8 pp.

    Google Scholar 

  • Turesson G. (1922) The genotypical response of the plant species to the habitat. Hereditas 3, 211–350.

    Article  Google Scholar 

  • Turesson G. (1925) Plant species in relation to habitat and climate. Hereditas 6, 147–234.

    Article  Google Scholar 

  • Turesson G. (1931) The geographical distribution of the alpine ecotype of some Eurasiatic plants. Hereditas 19, 329–346.

    Google Scholar 

  • Watson P. J. (1969) Evolution in closely adjacent plant populations. VI. An entomophilous species, Potentilla erecta, in two contrasting habitats. Heredity 24, 407–422.

    Article  Google Scholar 

  • Wilkins D. A. (1957) A technique for the measurement of lead tolerance in plants. Nature, Lond. 180, 37–38.

    Article  CAS  Google Scholar 

  • Wilkins D. A. (1960) The measurement and genetic analysis of lead tolerance in Festuca ovina. Rep. Scott. Pl. Breed. Stn1960, 95–98.

    Google Scholar 

  • Woodworth C. M., Leng E. R. & Jugenheimer R.W. (1952) Fifty generations of selection for protein and oil in corn. Agron. J. 44, 60–65.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Blackwell Scientific Publications

About this chapter

Cite this chapter

Bradshaw, A.D. (1971). Plant Evolution in Extreme Environments. In: Creed, R. (eds) Ecological Genetics and Evolution. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-0432-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0432-7_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-0434-1

  • Online ISBN: 978-1-4757-0432-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics