Skip to main content

Spatio-Temporal Chaos

  • Chapter
Chaos, Order, and Patterns

Part of the book series: NATO ASI Series ((NSSB,volume 280))

Abstract

Continuous physical systems, such as electromagnetic fields or fluids, are described dynamically by partial differential equations, or field theories. Thus they have infinitely many degrees of freedom; accordingly, it came as a surprise at the end of the seventies that such systems can exhibit low dimensional chaos which is characteristic of systems with few degrees of freedom. In the meanwhile this miracle has been fully understood. By keeping a fluid in a box which is not too large compared to some typical macroscopic scale (like the size of a convection roll) one can maintain spatial coherence but the system will become temporally chaotic. Only a few spatial modes get appreciably excited, and their amplitudes define a low-dimensional “phase-space” in which the chaotic dynamics takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlers G. and R.P. Behringer: Prog. Theor. Phys. Suppl. 64, 186 (1979).

    Article  ADS  Google Scholar 

  2. Auerbach D., P. Cvitanović, J.-P. Eckmann, G. Gunaratne, and I. Procaccia: Exploring chaotic motions through periodic orbits. Phys. Rev. Lett 58, 2387–2389 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  3. Aronson, D. and H. Weinberger: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 33–76 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodenschatz E., W. Pesch and L. Kramer: Physica 32D, 135 (1988).

    ADS  Google Scholar 

  5. Collet P. and J.-P. Eckmann: Instabilities and Fronts in Extended Systems, Princeton University Press (1990).

    Google Scholar 

  6. Coullet P., L. Gil and F. Lega: Phys. Rev. Lett. 62, 1619 (1989).

    Article  ADS  Google Scholar 

  7. Eckmann J.-P., G. Goren and I. Procaccia: Nonequilibrium nucleation of topological defects as a deterministic phenomenon. Preprint. (Weizmann Institute 1991).

    Google Scholar 

  8. Eckmann J.-P. and I. Procaccia: The onset of defect mediated turbulence. Preprint. (Weizmann Institute 1990).

    Google Scholar 

  9. Eckmann J.-P. and I. Procaccia: The generation of spatio-temporal chaos in large aspect ratio hydrodynamics. Preprint. (Weizmann Institute 1990).

    Google Scholar 

  10. Eckmann J.-P. and C.E. Wayne: Propagating fronts and the center manifold theorem. Preprint. (University of Geneva 1990).

    Google Scholar 

  11. Eckmann J.-P. and M. Zamora: Stationary solutions for the Swift-Hohenberg equation in nonuniform backgrounds. Preprint. (University of Geneva 1990).

    Google Scholar 

  12. Goren G., I. Procaccia, S. Rasenat, and V. Steinberg: Interactions and dynamics of topological defects: Theory and experiments near the onset of weak turbulence. Phys. Rev. Lett. 63, 1237–1240 (1989).

    Article  ADS  Google Scholar 

  13. Greenside H.S. and M.C. Cross: Stability analysis of two-dimensional models of three-dimensional convection. Phys. Rev. A 31, 2492–2501 (1985).

    Article  ADS  Google Scholar 

  14. E. Hairer, S.P. Nørsett, and G. Wanner: Solving Ordinary Differential Equations I, Berlin, Heidelberg, New York, Springer (1987).

    MATH  Google Scholar 

  15. M.W. Hirsch, C.C. Pugh, and M. Shub: Invariant Manifolds, Lecture Notes in Mathematics Vol. 583, Berlin, Heidelberg, New York, Springer (1977).

    Google Scholar 

  16. Kirchgässner K.: Nonlinearly Resonant Surface Waves and Homoclinic Bifurcation. Adv. Appl. Mech. 26, 135–181 (1988).

    Article  MATH  Google Scholar 

  17. Kramer L., H.R. Schober, and W. Zimmermann: Pattern competition and the decay of unstable patterns in quasi-one-dimensional systems. Physica D31, 212–226 (1988).

    ADS  Google Scholar 

  18. Langer J.S.: Theory of the condensation point. Ann. Physics 41, 108–157 (1967).

    Article  ADS  Google Scholar 

  19. Langer J.S. and M.E. Fisher: Intrinsic critical velocity of a superfluid. Phys. Rev. Lett. 19, 560–563 (1967).

    Article  ADS  Google Scholar 

  20. Llave R. and C.E. Wayne: Whiskered and low dimensional tori for nearly integrable hamiltonian systems. (To appear). Nonlinearity.

    Google Scholar 

  21. Lowe M. and J.P. Gollub: Pattern selection near the onset of convection: The Eckhaus instability. Phys. Rev. Lett. 55, 2575–2578 (1985).

    Article  ADS  Google Scholar 

  22. Mielke A.: Reduction of Quasilinear Elliptic Equations in Cylindrical Domains with Applications. Math. Meth. Appl. Sci. 10, 51–66 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  23. Newell A.: (To appear). Phys. Rev. Lett.

    Google Scholar 

  24. Moser J.: Stabie and random motions in dynamical systems: with special emphasis on mechanics, Princeton University Press (1973).

    Google Scholar 

  25. Pocheau A., V. Croquette, and O. LeGal: Phys. Rev. Lett. 55, 1099 (1985).

    Article  ADS  Google Scholar 

  26. Rehberg I., S. Rasenat, and V. Steinberg: Phys. Rev. Lett. 62, 756 (1989).

    Article  ADS  Google Scholar 

  27. Ribotta R., A. Joets: In Cellular Structures and Instabilities, (Wesfreid J.E. and S. Zaleski eds.). Springer (1984).

    Google Scholar 

  28. Sevryuk M.B.: Reversible Systems, Lecture Notes in Mathematics, Vol. 1211, Springer (1986).

    Google Scholar 

  29. Swift J. and P.C. Hohenberg: Phys. Rev. A15, 319 (1977).

    ADS  Google Scholar 

  30. Zippelius A. and E.D.Siggia: Stability of finite-amplitude convection. Phys. Fluids 26, 2905–2915 (1983).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Eckmann, JP., Procaccia, I. (1991). Spatio-Temporal Chaos. In: Artuso, R., Cvitanović, P., Casati, G. (eds) Chaos, Order, and Patterns. NATO ASI Series, vol 280. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0172-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0172-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0174-6

  • Online ISBN: 978-1-4757-0172-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics