Skip to main content

Quasiperiodicity, Mode-Locking, and Universal Scaling in Rayleigh-Bénard Convection

  • Chapter
Chaos, Order, and Patterns

Part of the book series: NATO ASI Series ((NSSB,volume 280))

  • 268 Accesses

Abstract

Quasiperiodicity, mode-locking and universal scaling dynamics are described for Rayleigh-Bénard convection in a dilute solution of 3He in superfluid 4He. Examples from experimental data are used to illustrate analysis techniques of nonlinear dynamics: power spectra, phase space reconstruction, Poincaré sections, transients and stability eigenvalues, return maps, multifractal f(α) analysis, and scaling function dynamics. Using these tools we show that the route to chaos in this system of two intrinsic oscillatory modes has the same universality as the sine circle map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Huyghens, letter to his father, dated 26 Feb. 1665, Ouevres Completes de Christian Huyghens, (M. Nijhoff, Ed.), The Hague, The Netherlands: Societe Hollandaise des Sciences, 1893, vol. 5, p. 243.

    Google Scholar 

  2. R. Abraham and C. Shaw, ‘Dynamics: The Geometry of Motion’, Aerial Press (1981).

    Google Scholar 

  3. M. Peixoto, Structural Stability on Two Dimensional Manifolds, Topology 1:101 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  4. V.I. Arnold, Loss of Stability of Self-Oscillations Close to Resonance and Versal Deformations of Equivariant Vector Fields, Func. Anal. Appl. 11:1 (1977).

    Article  Google Scholar 

  5. R.E. Ecke, J.D. Farmer, and D.K. Umberger, Scaling of the Arnold Tongues, Non-linearity 2:175 (1989).

    MathSciNet  ADS  MATH  Google Scholar 

  6. D.G. Aronson, R.P. McGehee, I.G. Kevrekidis and R. Aris, Entrainment Regions for Periodically Forced Oscillators, Phys. Rev. 33A:2190 (1986).

    ADS  Google Scholar 

  7. I.G. Kevrekidis, R. Aris, and L.D. Schmidt, Forcing an Entire Bifurcation Diagram: Case Studies in Chemical Oscillators, Physica 23D:391 (1986).

    MathSciNet  ADS  Google Scholar 

  8. P. Bryant and C. Jeffries, The Dynamics of Phase Locking and Points of Resonance in a Forced Magnetic Oscillator, Physica 25D:196 (1987).

    MathSciNet  ADS  Google Scholar 

  9. M.A. Taylor and I.G. Kevrekidis, Common Features of Coupled Oscillatory Reacting Systems, Physica D, to appear (1991).

    Google Scholar 

  10. S. Ostlund, D. Rand, J. Sethna, and E. Siggia, Universal Properties of the Transition from Quasiperiodicity to Chaos in Dissipative Systems, Physica 8D:303 (1983).

    MathSciNet  ADS  Google Scholar 

  11. M. Jensen, P. Bak, and T. Bohr, Transition to Chaos by Interaction of Resonances in Dissipative Systems: I. Circle Maps, Phys. Rev. A30:1960 (1984).

    MathSciNet  ADS  Google Scholar 

  12. P. Cvitanovic, M.H. Jensen, L.P. Kadanoff, and I. Procaccia, Renormalization, Unstable Manifolds and the Fractal Structure of Mode Locking, Phys. Rev. Lett. 55:343 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  13. P. Cvitanovic, B. Shraiman, and B. Soderberg, Scaling Laws for Mode Lockings in Circle Maps, Phys. Scr. 32:263 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. S.J. Shenker, Scaling Behavior in a Map of a Circle onto Itself: Empirical Results, Physica 5D:405 (1982).

    MathSciNet  ADS  Google Scholar 

  15. M.J. Feigenbaum, L.P. Kadanoff, and S.J. Shenker, Quasiperiodicity in Dissipative Systems: A Renormalization Group Analysis, Physica 5D:370 (1982).

    MathSciNet  ADS  Google Scholar 

  16. K. Kaneko, ‘Collapse of Tori and Genesis of Chaos in Dissipative Systems’, World Scientific Pub., Singapore (1986).

    Google Scholar 

  17. J.D. Farmer, Sensitive Dependence on Parameters in Nonlinear Dynamics, Phys. Rev. Lett. 55:351 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  18. R. Eykholt and D.K. Umberger, Characterization of Fat Fractals in Nonlinear Dynamical Systems, Phys. Rev. Lett. 57:2333 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  19. J.A. Glazier and A. Libchaber, Quasiperiodicity and Dynamical Systems: An Experimentalist’s View, IEEE Trans. Cir. Sys. 35:790 (1988).

    Article  MathSciNet  Google Scholar 

  20. J. Maurer and A. Libchaber, Rayleigh-Bénard Experiment in Liquid Helium; Frequency Locking and the Onset of Turbulence, J. Physique Lett. (Paris) 40:L-419 (1979).

    Article  Google Scholar 

  21. J.P. Gollub and S.V. Benson, Many Routes to Turbulent Convection, J. Fluid Mech. 100:449 (1980).

    Article  ADS  Google Scholar 

  22. M. Sano and Y. Sawada, Experimental Study on Poincaré Mappings in Rayleigh-Benard Convection, in Turbulence and Chaotic Phenomena in Fluids, ed. by T. Tatsumi (North Holland, Amsterdam, 1983).

    Google Scholar 

  23. A.P. Fein, M.S. Heutmaker and J.P. Gollub, Scaling at the Transition from Quasiperiodicity to Chaos in a Hydrodynamic System, Phys. Scr. T9:79 (1985).

    Article  ADS  Google Scholar 

  24. J. Stavans, F. Heslot, and A. Libchaber, Fixed Winding Number and the Quasiperiodic Route to Chaos in a Convecting Fluid, Phys. Rev. Lett. 55:596 (1985).

    Article  ADS  Google Scholar 

  25. J. Stavans, Experimental Study of Quasiperiodicity in a Hydrodynamic System, Phys. Rev. A35:4314 (1987).

    ADS  Google Scholar 

  26. G.A. Held and C. Jeffries, Quasiperiodic Transitions to Chaos of Instabilities in an Electron-Hole Plasma Excited by ac Perturbations at One and Two Frequencies, Phys. Rev. Lett. 56:1183 (1986).

    Article  ADS  Google Scholar 

  27. S. Martin and W. Martienssen, Circle Maps and Mode Locking in the Driven Electrical Conductivity of Barium Sodium Niobate Crystals, Phys. Rev. Lett. 56:1522 (1986).

    Article  ADS  Google Scholar 

  28. E. G. Gwinn and R. M. Westervelt, Frequency Locking, Quasiperiodicity, and Chaos in Extrinsic Ge, Phys. Rev. Lett. 57:1060 (1986).

    Article  ADS  Google Scholar 

  29. E. G. Gwinn and R. M. Westervelt, Scaling Structure of Attractors at the Transition from Quasiperiodicity to Chaos in Electronic Transport in Ge, Phys. Rev. Lett. 59:157 (1987).

    Article  ADS  Google Scholar 

  30. A. Cummings and P.S. Linsay, Deviations from Universality in the Transition from Quasiperiodicity to Chaos, Phys. Rev. Lett. 59:1633 (1987).

    Article  ADS  Google Scholar 

  31. Z. Su, R.W. Rollins, and E.R. Hunt, Measurements of f(α) Spectra of Attractors at Transitions to Chaos in Driven Diode Resonator Systems, Phys. Rev. A36:3515 (1987).

    ADS  Google Scholar 

  32. D. Olinger and K. Sreenivasan, Nonlinear Dynamics of the Wake of an Oscillating Cylinder, Physical Review Letters 60:797 (1988).

    Article  ADS  Google Scholar 

  33. D. Baums, W. Elsasser and E. Gobel, Farey Tree and Devil’s Staircase of a Modulated External Cavity Semiconductor Laser, Phys. Rev. Lett. 63:155 (1989).

    Article  ADS  Google Scholar 

  34. T. Yazaki. S. Takishima, and F. Mizutani, Complex Quasiperiodic and Chaotic States Observed in Thermally Induced Oscillations of Gas Columns, Phys. Rev. Lett. 58:1108 (1987).

    Article  ADS  Google Scholar 

  35. T. Yazaki. S. Sugioka, F. Mizutani, and H. Mamada, Nonlinear Dynamics of a Forced Thermoacoustic Oscillation, Phys. Rev. Lett. 64:2515 (1990).

    Article  ADS  Google Scholar 

  36. B. Shraiman, Transition from Quasiperiodicity to Chaos: A Perturbative Renormalization Group Approach, Phys. Rev. A29:3464 (1984).

    MathSciNet  ADS  Google Scholar 

  37. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, and B.L Shraiman, Fractal Measures and their Singularities: The Characterization of Strange Sets, Phys. Rev. A33, 1141 (1986).

    MathSciNet  ADS  Google Scholar 

  38. M.H. Jensen, L.P. Kadanoff, A. Libchaber, I. Procaccia, and J. Stavans, Global Universality at the Onset of Chaos: Results of a Forced Rayleigh-Bénard Experiment, Phys. Rev. Lett. 55:2798 (1985).

    Article  ADS  Google Scholar 

  39. Nonuniversal behavior in the fractal dimension of the devils staircase reported in [30] was later shown [40] to be due to the scheme used to compute the fractal dimension; a complete multifractal f(α) analysis yields excellent agreement between experiment and theory.

    Google Scholar 

  40. D. Barkley and A. Cummings, Thermodynamics of the Quasiperiodic Parameter Set at the Borderline of Chaos: Experimental Results, Phys. Rev. Lett. 64:327 (1990).

    Article  ADS  Google Scholar 

  41. H. Haucke and R. Ecke, Mode Locking and Chaos in Rayleigh-Bénard Convection, Physica 25D:307 (1987).

    ADS  Google Scholar 

  42. R. Mainieri, T.S. Sullivan, and R.E. Ecke, Two-Parameter Study of the Quasiperiodic Route to Chaos in Convecting 3He-Superfluid-4He Mixtures, Phys. Rev. Lett. 63:2357 (1989).

    Article  ADS  Google Scholar 

  43. R.E. Ecke, R. Mainieri, and T.S. Sullivan, Universality in Quasiperiodic Rayleigh-Bénard Convection, in preparation.

    Google Scholar 

  44. J. Peinke, J. Parisi, R.P. Huebner, M. Duong-van and P. Keller, Quasiperiodic Behavior of d.c.-Biased Semiconductor Br akdown, Euro. Phys. Lett. 12:13 (1990).

    Article  ADS  Google Scholar 

  45. M. Bauer, U. Krueger, and W. Martienssen, Experimental Studies of Mode-Locking and Circle Maps in Inductively Shunted Josephson Junctions, Europhys. Lett. 9:191 (1989).

    Article  ADS  Google Scholar 

  46. H. Haucke, Y. Maeno, R.E. Ecke, and J. Wheatley, Noise-induced Intermittency in Rayleigh-Benard Convection, Phys. Rev. Lett. 53:2090 (1984).

    Article  ADS  Google Scholar 

  47. H. Haucke, R.E. Ecke, and J.C. Wheatley, Dimension and Entropy for Quasiperiodic and Chaotic Convection, in Dimension and Entropies in Chaotic Systems, ed. by G. Mayer-Kress, (Springer Verlag, Berlin, 1986) p. 198.

    Google Scholar 

  48. R.E. Ecke and I.G. Kevrekidis, Interactions of Resonances and Global Bifurcations in Rayleigh-Bénard Convection, Phys. Lett. 131A:344 (1988).

    ADS  Google Scholar 

  49. R.E. Ecke and H. Haucke, Noise-induced Intermittency in the Quasiperiodic Regime of Rayleigh-Bénard Convection, J. Stat. Phys. 54:1153 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  50. I.G. Kevrekidis and R.E. Ecke Global Bifurcations in Maps of the Plane and in Rayleigh-Bénard Convection, Cont. Math. 99:313 (1989).

    Article  MathSciNet  Google Scholar 

  51. Y. Maeno, H. Haucke, R.E. Ecke, and J.C. Wheatley, Oscillatory Convection in a Dilute 3He-Superfluid-4He Solution, J. Low Temp. Phys. 59:305 (1985).

    Article  ADS  Google Scholar 

  52. G. Metcalf and R. Behringer, Convection in 3He-Superfluid-4He Mixtures: Measurement of Superfluid Effects, Phys. Rev. A41:5735 (1990).

    ADS  Google Scholar 

  53. N.H. Packard, J.P. Crutchfield, J.D. Farmer, and R.S. Shaw, Geometry from a Time Series, Phys. Rev. Lett. 45:712 (1980).

    Article  ADS  Google Scholar 

  54. A. Fraser and H.L. Swinney, Independent Coordinates for Strange Attractors from Mutual Information, Phys. Rev. A33:1134 (1986).

    MathSciNet  ADS  Google Scholar 

  55. J.-P. Eckmann and D. Ruelle, Ergodic Theory of Chaos and Strange Attractors, Rev. Mod. Phys. 57:617 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  56. F. Harris, On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform, Proc. IEEE 66:51 (1978).

    Article  ADS  Google Scholar 

  57. R.E. Ecke, Y. Maeno, H. Haucke, and J.C. Wheatley, Critical Dynamics near the Oscillatory Instability in Rayleigh-Bénard Convection, Phys. Rev. Lett. 53:1567 (1984).

    Article  ADS  Google Scholar 

  58. R.E. Ecke, H. Haucke, Y. Maeno and J.C. Wheatley, Critical Dynamics at a Hopf Bifurcation to Oscillatory Rayleigh-Bénard Convection, Phys. Rev. A33:1870 (1986).

    ADS  Google Scholar 

  59. R.J. Deissler, R.E. Ecke, and H. Haucke, Universal Scaling and Transient Behavior of Temporal Modes hear a Hopf Bifurcation: Theory and Experiment, Phys. Rev. 36A:4390 (1987).

    ADS  Google Scholar 

  60. D. Rand, Universality for the Breakdown of Dissipative Golden Invariant Tori, Proceedings of the Eighth International Congress of Mathematical Physics, ed. by M. Mebkhout and R. Seneor, (World Scientific, Singapore, 1987).

    Google Scholar 

  61. X. Wang, R. Mainieri, and J.H. Lowenstein, Circle Map Scaling in a Two-Dimensional Setting, Phys. Rev. A40:5382 (1989).

    MathSciNet  ADS  Google Scholar 

  62. T. Bohr, P. Bak, and M. Jensen, Transition to Chaos by Interaction of Resonances in Dissipative Systems: II Josephson Junctions, Charge-Density Waves, and Standard Maps, Phys. Rev. A30:1970 (1984).

    MathSciNet  ADS  Google Scholar 

  63. T. Bohr, Destruction of Invariant Tori as an Eigenvalue Problem, Phys. Rev. Lett. 54:1737 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  64. D.G. Aronson, M.A. Ghory, G.R. Hall, and R.P. McGehee, Bifurcations from an Invariant Circle for Two-Parameter Families of Maps of the Plane: A Computer-Assisted Study, Commun. Math. Phys. 83:303 (1982).

    Article  ADS  MATH  Google Scholar 

  65. Mitchell J. Feigenbaum, The Transition to Aperiodic Behavior in Turbulent Systems, Commun. Math. Phys., 77:65, 1980.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. J.L. McCauley, Introduction to Multifractals in Dynamical Systems Theory and Fully Developed Turbulence, Phys. Rpts. 189:225 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. D. Ruelle, ‘Thermodynamic Formalism’, Addison-Wesley, Reading (1978).

    Google Scholar 

  68. M. J. Feigenbaum, Some Characterizations of Strange Sets, J. Stat. Mech. 46:919 (1987).

    MathSciNet  ADS  MATH  Google Scholar 

  69. M. J. Feigenbaum, Scaling Spectra and Return Times of Dynamical Systems, J. Stat. Mech. 46:925 (1987).

    MathSciNet  ADS  MATH  Google Scholar 

  70. M. J. Feigenbaum, Scaling Function Theory for Circle Maps, Nonlinearity 1:577 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. A. Belmonte, M.J. Vinson, J.A. Glazier, G.H. Gunaratne, and B.G. Kenny, Trajectory Scaling Functions at the Onset of Chaos: Experimental Results, Phys. Rev. Lett. 61:539 (1988).

    Article  ADS  Google Scholar 

  72. A. Chhabra and R.V. Jensen, Direct Determination of the f(α) Singularity Spectrum, Phys. Rev. Lett. 62:1327 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  73. M. J. Feigenbaum, M. Jensen, and I. Procaccia, Time Ordering and the Thermodynamics of Strange Sets: Theory and Experimental Tests, Phys. Rev. Lett. 57:1503 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  74. A. Arneodo and M. Holschneider, Crossover Effect in the f(α) Spectrum for Quasiperiodic Trajectories at the Onset of Chaos, Phys. Rev. Lett. 58:2007 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  75. J. Glazier, G. Gunaratne, and A. Libchaber, f(α) Curves: Experimental Results, Phys. Rev. A37:523 (1988).

    ADS  Google Scholar 

  76. D. Auerbach, P. Cvitanovic, J.-P. Eckmann, G. Gunaratne, and I. Procaccia, Exploring Chaotic Motion Through Periodic Orbits, Phys. Rev. Lett. 58:2387 (1987).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Ecke, R.E. (1991). Quasiperiodicity, Mode-Locking, and Universal Scaling in Rayleigh-Bénard Convection. In: Artuso, R., Cvitanović, P., Casati, G. (eds) Chaos, Order, and Patterns. NATO ASI Series, vol 280. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0172-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0172-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0174-6

  • Online ISBN: 978-1-4757-0172-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics