Skip to main content

Renormalization, Zygmund Smoothness and the Epstein Class

  • Chapter
Chaos, Order, and Patterns

Part of the book series: NATO ASI Series ((NSSB,volume 280))

  • 262 Accesses

Abstract

To randomize a deck of n-cards one may turn over one of the split stacks before shuffling. The resulting permutation of order n if irreducible is called a folding permutation because it may be accomplished by a continuous mapping f of the real line to itself which folds the line once. The orbit of the turning point is finite and f restricted to this finite orbit is the folding permutation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Coullet and C. Tresser. “Iteration d’endomorphismes et groupe de renormalisation”. J. de Physique Colloque C 539, C5–25 (1978). CRAS Paris 287 A, (1978).

    Google Scholar 

  2. P. Collet, J.-P. Eckmann and H. Koch. “Period-doubling bifurcations for families of maps on R n”. J. Stat. Phys. 25, 1–14 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  3. H. Epstein. “New proofs of the existence of the Feigenbaum functions”. Commun. Math. Phys., 106, 395–426 (1986).

    Article  ADS  MATH  Google Scholar 

  4. M.J. Feigenbaum. “Quantitative universality for a class of non-linear transformation”. J. Stat. Phys. 19. 25–52 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. M.J. Feigenbaum. “Universal metric properties of non-linear transformations”. J. Stat. Phys. 21, 669–706 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. W de Melo and S. Van Strien. “Schwarzian derivative and beyond”. Bull Amer Math Soc 18, 159–162 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Sullivan D. “Bounds, quadratic, differentials, and renormalization conjectures”. To appear in AMS volume (2) (1991) celebrating the Centennial of the American Mathematical Society.

    Google Scholar 

  8. D. Sullivan. “Quasiconformal homeomorphisms in dynamics, topology, and geometry”. ICM Berkeley 1986.

    Google Scholar 

  9. D. Sullivan. “Differentiable structures on fractal like sets”. In: Non-linear Evolution and Chaotic Phenomena, G. Gallavotti and P. Zweifel, eds., New-York, Plenum (1988). See also Herman Weyl Centenary Volume.

    Google Scholar 

  10. G. Swiatek “Critical Circle Maps”. Commun. Math. Phys. 119.109–128 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Sullivan, D. (1991). Renormalization, Zygmund Smoothness and the Epstein Class. In: Artuso, R., Cvitanović, P., Casati, G. (eds) Chaos, Order, and Patterns. NATO ASI Series, vol 280. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0172-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0172-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0174-6

  • Online ISBN: 978-1-4757-0172-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics