Skip to main content

Unfolding Complexity and Modelling Asymptotic Scaling Behavior

  • Chapter
Chaos, Order, and Patterns

Part of the book series: NATO ASI Series ((NSSB,volume 280))

  • 261 Accesses

Abstract

We discuss the problem of quantifying complexity in the framework of a hierarchical modelling of physical systems. The analysis is first performed on the set of all symbolic sequences which label non-empty regions in phase-space. A dynamical process represented by a shift map is associated with each admissible doubly-infinite sequence. The “grammatical” rules governing it are unfolded by using variable-length prefix-free codewords and described by means of allowed transitions on a “logic” tree. The derived model is employed to make predictions about the scaling behaviour of the system’s observables at each level of resolution. The complexity of the system, relative to the unfolding scheme, is evaluated through a generalization of the information gain by comparing prediction and observation. Rapidly converging estimates of thermodynamic averages can be obtained from the logic tree in the general incomplete-folding case using a transfer-matrix technique, related to the theory of scaling functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (a) “Chaos and Complexity”, R. Livi, S. Ruffo, S. Ciliberto and M. Buiatti Eds., World Scientific, Singapore (1988); (b) “Measures of Complexity and Chaos”, N.B. Abraham, A. Albano, T. Passamante and P. Rapp Eds., Plenum, New York (1990).

    Google Scholar 

  2. J. von Neumann, “Theory of Self-Reproducing Automata”, A. Burks ed., University of Illinois Press, Urbana, Illinois (1966).

    Google Scholar 

  3. K. Binder and A.P. Young, Rev.Mod.Phys. 58, 801 (1986).

    Article  ADS  Google Scholar 

  4. J. Guckenheimer and P. Holmes, “Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields”, Springer, New York (1986).

    Google Scholar 

  5. R. Badii, in [lb]; PSI Report 61, 1, Villigen, Switzerland (dy1990); Weizmann preprint, Rehovot, Israel (1988); R. Badii, M. Finardi and G. Broggi, in “Information Dynamics”, H. Atmanspacher Ed., Plenum, New York (1990).

    Google Scholar 

  6. V.M. Alekseev and M.V. Yakobson, Phys.Rep. 75, 287 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  7. M.J. Feigenbaum, J. Stat. Phys. 52, 527 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. D. Ruelle, “Thermodynamic Formalism”, Vol. 5 of Encyclopedia of Mathematics and its Applications, Addison-Wesley, Reading, MA (1978).

    Google Scholar 

  9. R.J. Solomonoff, Inf. Control 7, 1 (1964); A.N. Kolmogorov, Probl. Inform. Transm. 1, 1 (1965); G. Chaitin, J. Assoc.Comp.Math. 13, 547 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  10. J.E. Hopcroft and J.D. Ullman, “Introduction to Automata Theory, Languages and Computation”, Addison-Wesley, Reading, MA (1979).

    MATH  Google Scholar 

  11. G. Rozenberg and A. Salomaa, “The Mathematical Theory of L Systems”, Academic Press, London (1980).

    MATH  Google Scholar 

  12. J.P. Crutchfield, this issue.

    Google Scholar 

  13. R.M. Wharton, Inform. Contr. 26, 236 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Weiss, Monatshefte für Mathematik 77, 462 (1973).

    Article  MATH  Google Scholar 

  15. P. Collet and J.P. Eckmann, “Iterated Maps of the Interval as Dynamical Systems”, Birkhauser, Cambridge, MA, (1980).

    Google Scholar 

  16. I. Procaccia, S. Thomae and C. Tresser, Phys.Rev. A35, 1884 (1987).

    MathSciNet  ADS  Google Scholar 

  17. J.P. Crutchfield and K. Young in “Complexity, Entropy and Physics of Information”, W. Zurek Ed., Addison-Wesley, Reading, MA, (1989).

    Google Scholar 

  18. P. Grassberger, Wuppertal preprint B 89-26, (1989).

    Google Scholar 

  19. J.P. Crutchfield and K. Young, Phys.Rev.Lett. 63, 105 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  20. D. Auerbach and I. Procaccia, Phys.Rev. A41, 6602 (1990).

    MathSciNet  ADS  Google Scholar 

  21. S. Lloyd and H. Pagels, Ann. of Phys. 188, 186 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  22. If system A is described by a number of rules which grows, for increasing resolution, more rapidly than that of system B, the overall descriptive effort is dominated by the properties of A. As a consequence, complexity can be meaningfully defined only in the limit of infinitely extended patterns and characterizes the scaling behaviour of the physical process: it must equal zero, in particular, for systems specified by a finite number of dynamical rules, in agreement with point 1.

    Google Scholar 

  23. G. D’Alessandro and A. Politi, Phys.Rev.Lett. 64, 1609 (1989).

    Article  MathSciNet  Google Scholar 

  24. R. Hamming, “Coding and Information Theory”, Prentice-Hall, Englewood Cliffs, NJ (1986).

    MATH  Google Scholar 

  25. D. Auerbach, P. Cvitanović, J.P. Eckmann, G. Gunaratne and I. Procaccia, Phys. Rev.Lett. 58, 2387 (1987); P. Cvitanović, Phys.Rev.Lett. 61, 2729 (1988); C. Grebogi, E. Ott and J.A. Yorke, Phys.Rev. A36, 3522 (1988) and Phys.Rev. A37, 1711 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  26. R. Badii, Riv. Nuovo Cim. 12, N° 3, 1 (1989).

    Article  MathSciNet  Google Scholar 

  27. R. Artuso, E. Aurell and P. Cvitanović, Niels Bohr Institute preprints NBI-89-41 and NBI-89-42.

    Google Scholar 

  28. P. Cvitanovič, in Proceedings of the Workshop in Condensed Matter, Atomic and Molecular Physics, Trieste, Italy (1986); D. Katzen and I. Procaccia, Phys.Rev.Lett. 58, 1169 (1987); P. Grassberger, R. Badii and A. Politi, J.Stat.Phys. 51, 135 (1988); G. Broggi and R. Badii, Phys.Rev. 39A, 434 (1989).

    Google Scholar 

  29. P. Paoli, A. Politi, G. Broggi, M. Ravani and R. Badii, Phys.Rev.Lett. 62, 2429 (1989); P. Paoli, A. Politi and R. Badii, Physica D36, 263 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  30. P. Szépfalusy, T. Tel and G. Vattay, Eötvös preprint, Budapest (1990).

    Google Scholar 

  31. R. Badii and A. Politi, Phys. Rev. 35A, 1288 (1987); R. Badii and G. Broggi, Phys.Rev. 41A, 1165 (1990).

    MathSciNet  ADS  Google Scholar 

  32. M.J. Feigenbaum, M.H. Jensen and I. Procaccia, Phys.Rev.Lett. 57, 1503 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  33. M.A. Sepúveda and R. Badii in [1b]; R. Badii, M. Finardi and G. Broggi, PSI preprint, PSI-LUS-05 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Badii, R., Finardi, M., Broggi, G. (1991). Unfolding Complexity and Modelling Asymptotic Scaling Behavior. In: Artuso, R., Cvitanović, P., Casati, G. (eds) Chaos, Order, and Patterns. NATO ASI Series, vol 280. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0172-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0172-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0174-6

  • Online ISBN: 978-1-4757-0172-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics