Skip to main content

Membrane Structure and Dynamics Studied with NMR Spectroscopy

  • Chapter
Biological Membranes

Abstract

Biomembranes mediate the diverse functions of life and comprise mainly lipids and proteins, together with carbohydrates associated with the cellular and organelle surfaces. Present knowledge indicates that the lipids typically form a bilayer containing proteins that span the membrane or are attached to its surface. The lipid and protein moieties are amphiphilic, i.e., part of the molecule is polar and preferentially associated with water, whereas part is nonpolar and only sparingly soluble in aqueous media. The hydrophobic effect (Tanford, 1980) is thus an important determinant of the self-assembly of the lipids and proteins into biological membranes. In the liquid-crystalline state, as found in native membranes, the polar head groups of the lipids are on the exterior of the bilayer; whereas the nonpolar hydrocarbon chains are sequestered away from water, within the membrane interior. The lipid bilayer represents the fundamental permeability barrier to the passage of ions and polar molecules into or out of a cell or organelle. In addition the bilayer lipids play a role in the vectorial organization of membrane components. On the other hand, the distinctive functions of biological membranes are largely due to proteins, which may be influenced by lipid-protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abragam A (1961): The Principles of Nuclear Magnetism. London: Oxford University Press

    Google Scholar 

  • Akutsu H, Seelig J (1981): Interaction of metal ions with phosphatidylcholine bilayer membranes. Biochemistry 20:7366–7373

    Article  PubMed  CAS  Google Scholar 

  • Altbach MI, Mattingly M, Brown MF, Gmitro AF (1991): Magnetic resonance imaging of lipid deposits in human atheroma via a stimulated-echo diffusion technique. Magn Reson Med 20:319–326

    Article  PubMed  CAS  Google Scholar 

  • Atkins PW (1990): Physical Chemistry, 4th Ed. San Francisco: Freeman

    Google Scholar 

  • Auger M, Carrier D, Smith ICP, Jarrell HC (1990): Elucidation of motional modes in glycoglycerolipid bilayers. A 2H NMR relaxation and line-shape study. J Am Chem Soc 112:1373–1381

    Article  CAS  Google Scholar 

  • Barry JA, Trouard TP, Salmon A, Brown MF (1991): Low temperature 2H NMR spectroscopy of phospholipid bilayers containing docosahexaenoyl (22:6ω3) chains. Biochemistry 30:8386–8394

    Article  PubMed  CAS  Google Scholar 

  • Bax A (1989): Two-dimensional NMR and protein structure. Ann Rev Biochem 58:223–256

    Article  PubMed  CAS  Google Scholar 

  • Blinc R, Luzar M, Vilfan M, Burgar M (1975): Proton spin-lattice relaxation in smectic TBBA. J Chem Phys 63:3445–3451

    Article  CAS  Google Scholar 

  • Bloom M, Morrison C, Sternin E, Thewalt JL (1992): Spin echoes and the dynamic properties of membranes. In: Pulsed Magnetic Resonance: NMR, ESR, Optics, Bagguley DMS, ed. Oxford: Clarendon Press

    Google Scholar 

  • Bonmatin J-M, Smith ICP, Jarrell HC, Siminovitch DJ (1990): Use of a comprehensive approach to molecular dynamics in ordered lipid systems: cholesterol reorientation in ordered lipid bilayers. A 2H NMR relaxation case study. J Am Chem Soc 112:1697–1704

    Article  CAS  Google Scholar 

  • Braun W, Wider G, Lee KH, WĂĽthrich K (1983): Conformation of glucagon in a lipid-water interphase by 1H nuclear magnetic resonance. J Mol Biol 169:921–948

    Article  PubMed  CAS  Google Scholar 

  • Brink DM, Satchler GR (1968): Angular Momentum. London: Oxford University Press

    Google Scholar 

  • Brown MF (1996): Influences of membrane lipids on the photochemical function of rhodopsin. In: Structure and Biological Roles of Lipids Forming Non-Lamellar Structures, Epand RM, ed. Greenwich: JAI Press

    Google Scholar 

  • Brown MF (1994): Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids 73:159–180

    Article  PubMed  CAS  Google Scholar 

  • Brown MF (1990): Anisotropic nuclear spin relaxation of cholesterol in phospholipid bilayers. Mol Phys 71:903–908

    Article  CAS  Google Scholar 

  • Brown MF (1984a): Theory of spin-lattice relaxation in lipid bilayers and biological membranes: dipolar relaxation. J Chem Phys 80:2808–2831

    Article  CAS  Google Scholar 

  • Brown MF (1984b): Unified picture for spin-lattice relaxation of lipid bilayers and biomembranes. J Chem Phys 80:2832–2836

    Article  CAS  Google Scholar 

  • Brown MF (1982): Theory of spin-lattice relaxation in lipid bilayers and biological membranes. 2H and 14N quadrupolar relaxation. J Chem Phys 77:1576–1599

    Article  CAS  Google Scholar 

  • Brown MF (1979): Deuterium relaxation and molecular dynamics in lipid bilayers. J Magn Reson 35:203–215

    CAS  Google Scholar 

  • Brown MF, Chan SI (1995): Bilayer membranes: deuterium & carbon-13 NMR. In: Encylcopedia of Nuclear Magnetic Resonance, Grant DM, Harris RK, eds. New York: Wiley

    Google Scholar 

  • Brown MF, Davis JH (1981): Orientation and frequency dependence of the deuterium spin-lattice relaxation in multilamellar phospholipid dispersions: implications for dynamic models of membrane structure. Chem Phys Lett 79:431–435

    Article  CAS  Google Scholar 

  • Brown MF, Seelig J (1978): Influences of cholesterol on the polar region of phosphatidylcholine and phosphatidylethanolamine bilayers. Biochemistry 17:381–384

    Article  PubMed  CAS  Google Scholar 

  • Brown MF, Seelig J (1977): Ion-induced changes in head group conformation of lecithin bilayers. Nature 269:721–723

    Article  CAS  Google Scholar 

  • Brown MF, Söderman O (1990): Orientational anisotropy of nuclear spin relaxation in phospholipid membranes. Chem Phys Lett 167:158–164

    Article  CAS  Google Scholar 

  • Brown MF, Deese AJ, Dratz EA (1982): Proton, carbon-13, and phosphorus-13 NMR methods for the investigation of rhodopsin-lipid interactions in retinal rod outer segment membranes. Methods Enzymol 81:709–728

    Article  PubMed  CAS  Google Scholar 

  • Brown MF, Ellena JF, Trindle C, Williams GD (1986): Frequency dependence of spin-lattice relaxation times of lipid bilayers. J Chem Phys 84:465–470

    Article  CAS  Google Scholar 

  • Brown MF, Miljanich GP, Dratz EA (1977): Interpretation of 100- and 360-MHz proton magnetic resonance spectra of retinal rod outer segment disk membranes. Biochemistry 16:2640–2648

    Article  PubMed  CAS  Google Scholar 

  • Brown MF, Ribeiro AA, Williams GD (1983): New view of lipid bilayer dynamics from 2H and 13C NMR relaxation time measurements. Proc Natl Acad Sci USA 80:4325–4329

    Article  PubMed  CAS  Google Scholar 

  • Brown MF, Salmon A, Henriksson U, Söderman O (1990): Frequency dependent 2H NMR relaxation rates of small unilamellar phospholipid vesicles. Mol Phys 69:379–383

    Article  CAS  Google Scholar 

  • Brown MF, Seelig J, Häberlen U (1979): Structural dynamics in phospholipid bilayers from deuterium spin-lattice relaxation time measurements. J Chem Phys 70:5045–5053

    Article  CAS  Google Scholar 

  • Bystrov VF, Arseniev AS, Barsukov IL, Lomize AL (1986): 2D NMR of single and double stranded helices of gramicidin A in micelles and solutions. Bull Magn Reson 8:84–94

    Google Scholar 

  • Clore GM, Gronenborn AM (1991): Two-, three-, and four-dimensional NMR methods for obtaining larger and more precise three-dimensional structures of proteins in solution. Ann Rev Biophys Biophys Chem 20:29–63

    Article  CAS  Google Scholar 

  • Creuzet F, McDermott A, Gebhard R, van der Hoef K, Spijker-Assink MB, Herzfeld J, Lugtenburg J, Levitt MH, Griffin RG (1991): Determination of membrane protein structure by rotational resonance NMR: bacteriorhodopsin. Science 251:783–786

    Article  PubMed  CAS  Google Scholar 

  • Davies MA, Schuster HF, Brauner JW, Mendelsohn R (1990): Effects of cholesterol on conformational disorder in dipalmitoylphosphatidylcholine bilayers. A quantitative IR study of the depth dependence. Biochemistry 29:4368–4373

    Article  PubMed  CAS  Google Scholar 

  • Davis JH (1983): The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim Biophys Acta 737:117–171

    PubMed  CAS  Google Scholar 

  • de Groot H, Smith SO, Courtin J, van den Berg E, Winkel C, Lugtenberg J, Griffin RG, Herzfeld J (1990): Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin. Biochemistry 29:6873–6883

    Article  PubMed  Google Scholar 

  • Deese AJ, Dratz EA, Brown MF (1981a): Retinal ROS lipids form bilayers in the presence and absence of rhodopsin: a 31P NMR study. FEBS Lett 124:93–99

    Article  PubMed  CAS  Google Scholar 

  • Deese AJ, Dratz EA, Dahlquist FW, Paddy MR (1981b): Interaction of rhodopsin with two unsaturated phosphatidylcholines: a deuterium NMR study. Biochemistry 20:6420–6427

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer J, Michel H (1989): The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis. Science 245:1463–1473

    Article  PubMed  CAS  Google Scholar 

  • Dill KA, Naghizadeh J, Marqusee JA (1988): Chain molecules at high densities at interfaces. Ann Rev Phys Chem 39:425–461

    Article  CAS  Google Scholar 

  • Dodd SW, Brown MF (1989): Disaturated phosphatidylcholines in the liquid-crystalline state studied by deuterium NMR spectroscopy. Biophys J 55:102a

    Google Scholar 

  • Ellena JF, Pates RD, Brown MF (1986): 31P NMR spectra of rod outer segment and sarcoplasmic reticulum membranes show no evidence of immobilized components due to lipid-protein interactions. Biochemistry 25:3742–3748

    Article  PubMed  CAS  Google Scholar 

  • Epand RM (1990): Relationship of phospholipid hexagonal phases to biological phenomena. Biochem Cell Biol 68:17–23

    Article  PubMed  CAS  Google Scholar 

  • Fong TM, McNamee MG (1987): Stabilization of acetylcholine receptor secondary structure by cholesterol and negatively charged phospholipids in membranes. Biochemistry 26:3871–3880

    Article  PubMed  CAS  Google Scholar 

  • Gaily HU, Seelig A, Seelig J (1976): Cholesterol-induced rod-like motion of fatty acyl chains in lipid bilayers. A deuterium magnetic resonance study. Hoppe-Seyler’s Z Physiol Chem 357:1447–1450

    Google Scholar 

  • Gibson NJ, Brown MF (1993): Lipid headgroup and acyl chain composition modulate the MI-MII equilibrium of rhodopsin in recombinant membranes. Biochemistry 32:2438–2454

    Article  PubMed  CAS  Google Scholar 

  • Gruner SM (1989): Stability of lyotropic phases with curved interfaces. J Phys Chem 93:7562–7570

    Article  CAS  Google Scholar 

  • Gullion T, Schaefer J (1989): Detection of weak heteronuclear dipolar coupling by rotational-echo double-resonance nuclear magnetic resonance. Adv Magn Reson 13:57–83

    Google Scholar 

  • Häberlen U (1976): High Resolution NMR in Solids. Selective Averaging. New York: Academic Press

    Google Scholar 

  • Hall JE, Vodyanoy I, Balasubramanian TM, Marshall GR (1984): Alamethicin: a rich model for channel behaviour. Biophys J 45:223–247

    Article  Google Scholar 

  • Halle B (1991): 2H NMR relaxation in phospholipid bilayers. Toward a consistent molecular interpretation. J Phys Chem 95:6724–6733

    Article  CAS  Google Scholar 

  • Hing AW, Adams SP, Silben DF, Norberg RE (1990): Deuterium NMR of Val1 ...(2–2H)Ala3...gramicidin A in oriented DMPC bilayers. Biochemistry 29:4144–4156

    Article  PubMed  CAS  Google Scholar 

  • Hing AW, Tjandra N, Cottam PF, Schaefer J, Ho C (1994): An investigation of the ligand-binding site of the glutamine-binding protein of escherichia coli using rotational-echo double-resonance NMR. Biochemistry 33:8651–8661

    Article  PubMed  CAS  Google Scholar 

  • Huang TH, Skarjune RP, Wittebort RJ, Griffin RG, Oldfield E (1980): Restricted rotational isomerization in polymethylene chains. J Am Chem Soc 102:7377–7379

    Article  CAS  Google Scholar 

  • Ipsen JH, Karlström G, Mouritsen OG, Wennerström HW, Zuckermann MJ (1987): Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta. 905:162–172

    Article  PubMed  CAS  Google Scholar 

  • Israelachvili J (1992): Intermolecular and Surface Forces, 2nd Ed. New York: Academic Press

    Google Scholar 

  • Israelachvili JN, Wennerström H (1992): Entropic forces between amphiphilic surfaces in liquids. J Phys Chem 96:520–531

    Article  CAS  Google Scholar 

  • Jansson M, Thurmond RL, Barry JA, Brown MF (1992): Deuterium NMR study of intermolecular interactions in lamellar phases containing palmitoyllysophosphatidylcholine. J Phys Chem 96:9532–9544

    Article  CAS  Google Scholar 

  • Jeffrey KR, Wong TC, Burnell EE, Thompson MJ, Higgs TP, Chapman NR (1979): Molecular motion in the lyotropic liquid crystal system containing potassium palmitate: a study of proton spin-lattice relaxation times. J Magn Reson 36:151–171

    CAS  Google Scholar 

  • Jensen JW, Schutzbach JS (1984): Activation of mannosyltransferase II by nonbilayer phospholipids. Biochemistry 23:1115–1119

    Article  CAS  Google Scholar 

  • Kelusky EC, Smith ICP (1983): Characterization of the binding of the local anesthetics procaine and tetracaine to model membranes of phosphatidylethanolamine: a deuterium nuclear magnetic resonance study. Biochemistry 22:6011–6017

    Article  PubMed  CAS  Google Scholar 

  • Ketchem RR, Hu W, Cross TA (1993): High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261:1457–1460

    Article  PubMed  CAS  Google Scholar 

  • Kinnunen PKJ, Kõiv A, Lehtonen JYA, Rytömaa M, Mustonen P (1994): Lipid dynamics and peripheral interactions of proteins with membrane surfaces. Chem Phys Lipids 73:181–207

    Article  PubMed  CAS  Google Scholar 

  • Koeppe RE II, Killian JA, Greathouse DV (1994): Orientations of the tryptophan 9 and 11 side chains of the gramicidin channel based on deuterium nuclear magnetic resonance spectroscopy. Biophys J 66:14–24

    Article  PubMed  CAS  Google Scholar 

  • König S, Pfeiffer W, Bayerl T, Richter D, Sackmann E (1992): Molecular dynamics of lipid bilayers studied by incoherent quasi-elastic neutron scattering. J Phys II 2:1589–1615

    Article  Google Scholar 

  • Kroon PA, Kainosho M, Chan SI (1976): Proton magnetic resonance studies of lipid bilayer membranes. Experimental determination of inter- and intramolecular nuclear relaxation rates in sonicated phosphatidylcholine bilayer vesicles. Biochim Biophys Acta 433:282–293

    Article  CAS  Google Scholar 

  • Lafleur M, Cullis P, Fine B, Bloom M (1990): Comparison of the orientational order of lipid chains in the L α and HII phases. Biochemistry 29:8325–8333

    Article  PubMed  CAS  Google Scholar 

  • Lindblom G, Orädd G (1994): NMR studies of translational diffusion in lyotropic liquid crystals and lipid membranes. Prog NMR Spectrosc 26:483–515

    Article  CAS  Google Scholar 

  • Lindblom G, Rilfors L (1989): Cubic phases and isotropic structures formed by membrane lipids—possible biological relevance. Biochim Biophys Acta 988:221–256

    CAS  Google Scholar 

  • Lipari G, Szabo A (1982): Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. I. Theory and range of validity. J Am Chem Soc 104:4546–4559

    Article  CAS  Google Scholar 

  • Lundbæk JA, Andersen OS (1994): Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J Gen Physiol 104:645–673

    Article  PubMed  Google Scholar 

  • Marqusee JA, Warner M, Dill KA (1984): Frequency dependence of NMR spin lattice relaxation in bilayer membranes. J Chem Phys 81:6404–6405

    Article  Google Scholar 

  • McConnell HM (1976): Molecular motion in biological membranes. In: Spin Labeling Theory and Applications, Berliner LJ, ed. New York: Academic Press

    Google Scholar 

  • McDermott AE, Creuzet F, Gebhard R, van der Hoef K, Levitt MH, Herzfeld J, Lugtenberg J, Griffin RG (1994): Determination of internuclear distances and the orientation of functional groups by solid-state NMR: rotational resonance study of the conformation of retinal in bacteriorhodopsin. Biochemistry 33:6129–6136

    Article  PubMed  CAS  Google Scholar 

  • Mcintosh TJ, Simon SA (1986): Area per molecule and distribution of water iri fully hydrated dilauroylphosphatidylethanolamine bilayers. Biochemistry 25:4948–4952

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin S (1989): The electrostatic properties of membranes. Ann Rev Biophys Bio-phys Chem 18:113–136

    Article  CAS  Google Scholar 

  • Michelangeli F, Grimes EA, East JM, Lee AG (1991): Effects of phospholipids on the function of (Ca2+-Mg2+)-ATPase. Biochemistry 30:342–351

    Article  PubMed  CAS  Google Scholar 

  • Morrison C, Bloom M (1994): Orientation dependence of 2H nuclear magnetic resonance spin-lattice relaxation in phospholipid and phospholipidxholesterol systems. J Chem Phys 101:749–763

    Article  CAS  Google Scholar 

  • Nagle JF (1993): Area/lipid of bilayers from NMR. Biophys J 64:1476–1481

    Article  PubMed  CAS  Google Scholar 

  • Nagle JF, Wiener MC (1988): Structure of fully hydrated bilayer dispersions. Biochim Biophys Acta 942:1–10

    Article  PubMed  CAS  Google Scholar 

  • Navarro J, Toivio-Kinnucan M, Racker E (1984): Effect of lipid composition on the calcium/adenosine 5’-triphosphate coupling ratio of the Ca2+-ATPase of sarcoplasmic reticulum. Biochemistry 23:130–135

    Article  PubMed  CAS  Google Scholar 

  • Newton AC (1993): Interactions of proteins with lipid headgroups: lessons from protein kinase C. Ann Rev Biophys Biomol Struct 22:1–25

    Article  CAS  Google Scholar 

  • Nordio PL, Segre U (1979): Rotational dynamics. In: The Molecular Physics of Liquid Crystals, Luckhurst GR, Gray GW, eds. New York: Academic Press

    Google Scholar 

  • Olsson U, Wennerström H (1994): Globular and bicontinuous phases of nonionic surfactant films. Adv Coll Interf Sci 49:113–146

    Article  CAS  Google Scholar 

  • Pastor RW, Venable RM, Karplus M (1991): Model for the structure of the lipid bilayer. Proc Natl Acad Sci USA 88:892–896

    Article  PubMed  CAS  Google Scholar 

  • Pastor RW, Venable RM, Karplus M (1988): Brownian dynamics simulation of a lipid chain in a membrane bilayer. J Chem Phys 89:1112–1127

    Article  CAS  Google Scholar 

  • Pearlman JD, Zajicek J, Merickel MB, Carman CS, Ayers CR, Brookeman JR, Brown MF (1988): High-resolution 1H NMR spectral signature from human atheroma. Magn Reson Med 7:262–279

    Article  PubMed  CAS  Google Scholar 

  • Peters GH, Toxvaerd S, Larsen NB, Bjørnholm T, Schaumburg K, Kjaer K (1995): Structure and dynamics of lipid monolayers: implications for enzyme catalysed lipolysis. Struct Biol 2:395–401

    Article  CAS  Google Scholar 

  • Petersen NO, Chan SI (1977): More on the motional state of lipid bilayer membranes: interpretation of order parameters obtained from nuclear magnetic resonance experiments. Biochemistry 16:2657–2667

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer W, König S, Legrand JF, Bayerl T, Richter D, Sackmann E (1993): Neutron spin echo study of membrane undulations in lipid multibilayers. Europhys Lett 23: 457–462

    Article  CAS  Google Scholar 

  • Prosser RS, Daleman SI, Davis JH (1994): The structure of an integral membrane peptide: a deuterium NMR study of gramicidin. Biophys J 66:1415–1428

    Article  PubMed  CAS  Google Scholar 

  • Rajamoorthi K, Brown MF (1991): Bilayers of arachidonic acid containing phospholipids studied by 2H and 31P NMR spectroscopy. Biochemistry 30:4204–4212

    Article  PubMed  CAS  Google Scholar 

  • Recktenwald DJ, McConnell HM (1981): Phase equilibria in binary mixtures of phosphatidylcholine and cholesterol. Biochemistry 20:4505–4510

    Article  PubMed  CAS  Google Scholar 

  • Rommel E, Noack F, Meier P, Kothe G (1988): Proton spin relaxation dispersion studies of phospholipid membranes. J Phys Chem 92:2981–2987

    Article  CAS  Google Scholar 

  • Rose ME (1957): Elementary Theory of Angular Momentum. New York: Wiley

    Google Scholar 

  • Rotenberg M, Bivins R, Metropolis N, Wooten JK Jr (1959): The 3-j and 6-j Symbols. Cambridge, MA: The Technology Press of the Massachusetts Institute of Technology

    Google Scholar 

  • Roth M, Lewit-Bentley A, Michel H, Deisenhofer J, Huber R, Oesterhelt D (1989): Detergent structure in crystals of bacterial photosynthetic reaction centre. Nature 340:659–662

    Article  CAS  Google Scholar 

  • Salmon A, Dodd SW, Williams GD, Beach JM, Brown MF (1987): Configurational statistics of acyl chains in polyunsaturated lipid bilayers from 2H NMR. J Am Chem Soc 109:2600–2609

    Article  CAS  Google Scholar 

  • Saupe A (1964): Kernresonanzen in kristallinen FlĂĽssigheiten und kristallin-flĂĽssigen Lösungen. Z Naturforsch A 19:161–171

    Google Scholar 

  • Schindler H, Seelig J (1975): Deuterium order parameters in relation to thermodynamic properties of a phospholipid bilayer. A statistical mechanical interpretation. Biochemistry 14:2283–2287

    Article  PubMed  CAS  Google Scholar 

  • Scott HL (1986): Monte Carlo calculations of order parameter, profiles in models of lipid-protein interactions in bilayers. Biochemistry 25:6122–6126

    Article  PubMed  CAS  Google Scholar 

  • Scott HL, Kalaskar S (1989): Lipid chains and cholesterol in model membranes: a Monte Carlo study. Biochemistry 28:3687–3691

    Article  PubMed  CAS  Google Scholar 

  • Seddon JM (1990): Structure of the inverted hexagonal (HII ) phase, and non-lamellar phase transitions of lipids. Biochim Biophys Acta 1031:1–69

    PubMed  CAS  Google Scholar 

  • Seelig J (1977): Deuterium magnetic resonance: theory and application to lipid membranes. Quart Rev Biophys 10:353–418

    Article  CAS  Google Scholar 

  • Seelig J, Seelig A (1980): Lipid conformation in model membranes and biological membranes. Quart Rev Biophys 13:19–61

    Article  CAS  Google Scholar 

  • Seelig J, Macdonald PM, Scherer PG (1987): Phospholipid headgroups as sensors of electric charge in membranes. Biochemistry 26:7535–7541

    Article  PubMed  CAS  Google Scholar 

  • Sefcik MD, Schaefer J, Stejskal EO, McKay RA, Ellena JF, Dodd SW, Brown MF (1983): Lipid bilayer dynamics and rhodopsin-lipid interactions: new approach using high-resolution solid-state 13C NMR. Biochem Biophys Res Commun 114:1048–1055

    Article  PubMed  CAS  Google Scholar 

  • Separovic F, Gehrmann J, Milne T, Cornell BA, Lin SY, Smith R (1994): Sodium ion binding in the gramicidin A channel. Solid-state NMR studies of the tryptophan residues. Biophys J 67:1495–1500

    Article  PubMed  CAS  Google Scholar 

  • Shinitzky M, Barenholz Y (1978): Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta 515:367–394

    PubMed  CAS  Google Scholar 

  • Siegel DP, Green WJ, Talmon Y (1994): The mechanism of lamellar-to-inverted hexagonal phase transitions: a study using temperature-jump cryo-electron microscopy. Biophys J 66:402–414

    Article  PubMed  CAS  Google Scholar 

  • Siminovitch DJ, Ruocco MJ, Olejniczak ET, Das Gupta SK, Griffin RG (1988a): Anisotropic 2H-nuclear magnetic resonance spin-lattice relaxation in cerebroside- and phos-pholipid-cholesterol bilayer membranes. Biophys J 54:373–381

    Article  PubMed  CAS  Google Scholar 

  • Siminovitch DJ, Wong FIT, Berchtold R, Mantsch HH (1988b): A comparison of the effect of one and two mono-unsaturated acyl chains on the structure of phospholipid bilayers: a high pressure infrared spectroscopic study. Chem Phys Lipids 46:79–87

    Article  CAS  Google Scholar 

  • Slichter CP (1990): Principles of Magnetic Resonance, 3rd Ed. Heidelberg: Springer-Verlag

    Google Scholar 

  • Smith R, Thomas DE, Separovic F, Atkins AR, Cornell BA (1989): Determination of the structure of a membrane-incorporated ion channel. Solid-state nuclear magnetic resonance studies of gramicidin A. Biophys J 56:307–314

    Article  PubMed  CAS  Google Scholar 

  • Smith SO, Griffin RG (1988): High resolution solid-state NMR of proteins. Ann Rev Phys Chem 39:511–535

    Article  CAS  Google Scholar 

  • Smith SO, Courtin J, de Groot H, Gebhard R, Lugtenberg J (1991): 13C Magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin. Biochemistry 30:7409–7415

    Article  PubMed  CAS  Google Scholar 

  • Smith SO, Hamilton J, Salmon A, Bormann BJ (1994a): Rotational resonance NMR determination of intra- and intermolecular distance constraints in dipalmitoylphos-phatidylcholine bilayers. Biochemistry 33:6327–6333

    Article  PubMed  CAS  Google Scholar 

  • Smith SO, Jonas R, Braiman M, Bormann BJ (1994b): Structure and orientation of the transmembrane domain of glycophorin in lipid bilayers. Biochemistry 33:6334–6341

    Article  PubMed  CAS  Google Scholar 

  • Smith SO, Palings I, Miley ME, Courtin J, de Groot H, Lugtenberg J, Mathies RA, Griffin RG (1990): Solid-state NMR Studies of the mechanism of the opsin shift in the visual pigment rhodopsin. Biochemistry 29:8158–8164

    Article  PubMed  CAS  Google Scholar 

  • Smith SO, Palings I, CopiĂ© V, Raleigh DP, Courtin J, Pardoen JA, Lugtenberg J, Mathies RA, Griffin RG (1987): Low-temperature solid-state 13C studies of the retinal chro-mohore in rhodopsin. Biochemistry 26:1606–1611

    Article  PubMed  CAS  Google Scholar 

  • Söderman O (1986): The interaction constants in 13C and 2H nuclear magnetic resonance relaxation studies. J Magn Reson 68:296–302

    Google Scholar 

  • Stohrer J, Gröbner G, Reimer D, Weisz K, Mayer C, Kothe G (1991): Collective lipid motions in bilayer membranes studied by transverse deuteron spin relaxation. J Chem Phys 95:672–678

    Article  CAS  Google Scholar 

  • Szabo A (1984): Theory of fluorescence depolarization in macromolecules and membranes. J Chem Phys 81:150–167

    Article  CAS  Google Scholar 

  • Tanford C (1980): The Hydrophobic Effect, 2nd Ed. New York: John Wiley

    Google Scholar 

  • Thurmond RL, Dodd SW, Brown MF (1991): Molecular areas of phospholipids as determined by 2H NMR spectroscopy: comparison of phosphatidylethanolamines and phosphatidylcholines. Biophys J 59:108–113

    Article  PubMed  CAS  Google Scholar 

  • Thurmond RL, Lindblom G, Brown MF (1993): Curvature, order, and dynamics of lipid hexagonal phases studied by deuterium NMR spectroscopy. Biochemistry 32:5394–5410

    Article  PubMed  CAS  Google Scholar 

  • Thurmond RL, Lindblom G, Brown MF (1990): Influences of membrane curvature in lipid hexagonal phases studied by deuterium NMR spectroscopy. Biochem Biophys Res Commun 173:1231–1238

    Article  PubMed  CAS  Google Scholar 

  • Thurmond RL, Otten D, Brown MF, Beyer K (1994): Structure and packing -of phosphatidylcholines in lamellar and hexagonal liquid-crystalline mixtures with a nonionic detergent: a wide-line deuterium and phosphorus-31 NMR study. J Phys Chem 98:972–983

    Article  CAS  Google Scholar 

  • Torchia DA, Szabo A (1982): Spin-lattice relaxation in solids. J Magn Reson 49:107–121

    CAS  Google Scholar 

  • Trouard TP, Alam TM, Brown MF (1994): Angular dependence of deuterium spin-lattice relaxation rates of macroscopically oriented dilaurylphosphatidylcholine in the liquid-crystalline state. J Chem Phys 101:5229–5261

    Article  CAS  Google Scholar 

  • Trouard TP, Alam TM, Zajicek J, Brown MF (1992): Angular anisotropy of 2H NMR spectral densities in phospholipid bilayers containing cholesterol. Chem Phys Lett 189:67–75

    Article  CAS  Google Scholar 

  • Ulrich AS, Heyn MP, Watts A (1992): Structure determination of the cyclohexene ring of retinal in bacteriorhodopsin by solid-state deuterium NMR. Biochemistry 31:10390–10399

    Article  PubMed  CAS  Google Scholar 

  • Ulrich AS, Wallat I, Heyn MP, Watts A (1995): Re-orientation of retinal in the M-photointermediate of bacteriorhodopsin. Struct Biol 2:190–192

    Article  CAS  Google Scholar 

  • Ulrich AS, Watts A, Wallat I, Heyn MP (1994): Distorted structure of the retinal chro-mophore in bacteriorhodopsin resolved by 2H-NMR. Biochemistry 33:5370–5375

    Article  PubMed  CAS  Google Scholar 

  • van der Ploeg P, Berendsen HJC (1982): Molecular dynamics simulation of a bilayer membrane. J Chem Phys 76:3271–3276

    Article  Google Scholar 

  • Venable RM, Zhang Y, Hardy BJ, Pastor RW (1993): Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. Science 262:223–226

    Article  PubMed  CAS  Google Scholar 

  • Vist MR, Davis JH (1990): Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry 29:451–464

    Article  PubMed  CAS  Google Scholar 

  • Vold RR, Void RL (1991): Deuterium relaxation in molecular solids. Adv Magn Opt Reson 16:85–171

    CAS  Google Scholar 

  • Wennerström H, Lindman B, Söderman O, Drakenberg T, Rosenholm JB (1979): 13C magnetic relaxation in micellar solutions. Influences of aggregate motion on Ti. J Am ChemSoc 101:6860–6864

    Article  Google Scholar 

  • Wiedmann TS, Pates RD, Beach JM, Salmon A, Brown MF (1988): Lipid-protein interactions mediate photochemical function of rhodopsin. Biochemistry 21:6469–6474

    Article  Google Scholar 

  • Wiener MC, White SH (1992): Structure of a fluid dioleoylphosphatidycholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys J 61:434–447

    Article  PubMed  CAS  Google Scholar 

  • Williams GD, Beach JM, Dodd SW, Brown MF (1985): Dependence of deuterium spin-lattice relaxation rates of multilamellar phospholipid dispersions on orientational order. J Am Chem Soc 107:6868–6873

    Article  CAS  Google Scholar 

  • Wittebort RJ, Olejniczak ET, Griffin RG (1987): Analysis of deuterium magnetic resonance line shapes in anisotropic media. J Chem Phys 86:5411–5420

    Article  CAS  Google Scholar 

  • WĂĽthrich K (1989): Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science 243:45–50

    Article  PubMed  Google Scholar 

  • Yeagle PL, Kelsey D (1989): Phosphorus NMR studies of lipid-protein interactions: human erythrocyte glycophorin and phospholipids. Biochemistry 28:2210–2215

    Article  PubMed  CAS  Google Scholar 

  • Zaccai G, BĂĽldt G, Seelig A, Seelig J (1979): Neutron diffraction studies on phosphatidylcholine model membranes. II. Chain conformation and segmental disorder. J Mol Biol 134:693–706

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Brown, M.F. (1996). Membrane Structure and Dynamics Studied with NMR Spectroscopy. In: Merz, K.M., Roux, B. (eds) Biological Membranes. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-8580-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8580-6_7

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-8582-0

  • Online ISBN: 978-1-4684-8580-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics