Skip to main content

An Empirical Potential Energy Function for Phospholipids: Criteria for Parameter Optimization and Applications

  • Chapter
Biological Membranes

Abstract

Lipid membranes are an essential component of all living cells. A molecular description of the structure and dynamics of such membranes from either experimental or theoretical approaches is still lacking. This is due in part to the two-dimensional fluid character of membranes (Singer and Nicolson, 1972), which makes difficult a detailed analysis by X-ray diffraction, neutron diffraction, or nuclear magnetic resonance. Detailed structural data of lipid molecules based on X-ray crystallography are available only for the nearly anhydrous crystalline state (Pascher et al, 1992; Small, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aue DH, Webb HM, Bowers MT (1976): A thermodynamic analysis of solvation effects on the basicities of alkylamines. An electrostatic analysis of substituent effects. J Am Chem Soc 98:318–329

    Article  CAS  Google Scholar 

  • Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993): A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  • Berg RW (1977): The vibrational spectrum of the normal and perdeuterated tetramethylammonium ions. Spectrochim Acta 34A:655–659

    Google Scholar 

  • Blom CE, Günthard HH (1981): Rotational isomerism in methylformate and methylacetate: A low-temperature matrix infrared study using thermal molecular beams. Chem Phys Lett 84:267–271

    Article  CAS  Google Scholar 

  • Bottger GL, Geddes AL (1965): The infrared spectra of the crystalline tetramethylammonium halides. Spectrochim Acta 21:1701–1708

    Article  CAS  Google Scholar 

  • Boyd RH (1969): Lattice energies and hydration thermodynamics of tetra-alkylammonium halides. J Chem Phys 51:1470–1474

    Article  CAS  Google Scholar 

  • Briggs JM, Nguyan TB, Jorgensen WL (1991): Monte Carlo simulations of liquid acetic acid and methyl acetate with the OPLS potential functions. J Phys Chem 95:3315–3322

    Article  CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983): CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Brun TO, Curtiss LA, Iton LE, Kleb R, Newsam JM, Beyerlein RA, Vaughn DEW (1987): Inelastic neutron scattering from tetramethylammonium cations occluded with zeolites. J Am Chem Soc 109:4118–4119

    Article  CAS  Google Scholar 

  • Charifson PS, Hiskey RG, Pedersen LG (1990): Construction and molecular modeling of phospholipid surfaces. J Comp Chem 11:1181–1186

    Article  CAS  Google Scholar 

  • Chirlan LE, Francl MM (1987): Atomic charges derived from electrostatic potentials: A detailed study. J Comp Chem 8:894–905

    Article  Google Scholar 

  • Cook RL, DeLucia FC, Helminger P (1974): Molecular force field and structure of water: Recent microwave results. J Mol Spect 53:62–76

    Article  CAS  Google Scholar 

  • Damodaram KV, Merz KM Jr, Gaber BP (1992): Structure and dynamics of the di-lauroylphosphatidylethanolamine lipid bilayer. Biochemistry 31:7656–7664

    Article  Google Scholar 

  • Dutta PK Del Barco B, Shieh DC (1986): Raman spectroscopic studies of the tetra-methylammonium ion in zeolite cages. Chem Phys Lett 127:200–204

    Article  CAS  Google Scholar 

  • Elder M, Hitchcock P, Mason R, Shipley GG (1977): A refinement analysis of the crystallography of the phospholipid, 1,2-dilauroyl-DL-phosphatidylethanolamine, and some remarks on lipid-lipid and lipid-protein interactions. Proc R Soc Lond A 354:157–170

    Article  CAS  Google Scholar 

  • Florian J, Johnson BG (1994): Comparison and scaling of hartree-fock and density functional harmonic force fields. 1. Formamide monomer. J Phys Chem 98:3681–3687

    Article  CAS  Google Scholar 

  • Frisch FMJ, Head-Gordon M, Trucks GW, Foresman JB, Schlegel HB, Raghavachari K, Robb M, Binkley JS, Gonzalez C, Defrees DJ, Fox DJ, Whiteside RA, Seeger R, Melius CF, Baker J, Martin RL, Kahn LR, Stewart JJP, Topiol S, Pople JA (1990): Gaussian 90 (computer program). Revision. Pittsburgh, PA: Gaussian, Inc.

    Google Scholar 

  • Gao J, Jorgensen WL (1992): personal communication

    Google Scholar 

  • Gelin BR, Karplus M (1975): Role of structural flexibility in conformational calculations. Application to acetylcholine and /3-methylacetylcholine. J Am Chem Soc 97:6996–7006

    Article  PubMed  CAS  Google Scholar 

  • Guyan L, Brady J (1996): All-hydrogen empirical force field parameters for carbohydrates. (Manuscript in preparation)

    Google Scholar 

  • Hariharan PC, Pople JA (1972): The effect of d-functions on molecular orbital energies for hydrocarbons. Chem Phys Lett 66:217–219

    Article  Google Scholar 

  • Häuser H, Pacher I, Sundeil S (1980): Conformation of phospholipids: Crystal structure of a lysophosphatidylcholine analogue. J Mol Biol 137:249–264

    Article  PubMed  Google Scholar 

  • Häuser H, Pascher I, Pearson RH, Sundeil S (1981): Preferred conformation and molecular packing ofphosphatidylethanolamine and phosphatidylcholine. Biochim Biophys Acta 650:21–51

    PubMed  Google Scholar 

  • Heller H, Schaefer M, Schulten K (1993): Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid-crystal phases. J Phys Chem 97:8343–8360

    Article  CAS  Google Scholar 

  • Hitchcock PB, Mason R, Thomas KM, Shipley GG (1974): Structural chemistry of 1,2 dilauroyl-DL-phosphatidylethanolmaine: molecular conformation and intermolecular packing of phospholipids. Proc Natl Acad Sci USA 71:3036–3040

    Article  PubMed  CAS  Google Scholar 

  • Hollenstein H, Günhthard HH (1980): A transferable valence field for polyatomic molecules. J Mol Spec 84:457–477

    Article  CAS  Google Scholar 

  • Hussin A, Scott HL (1987): Density and bonding profiles of interbilayer water as a function of bilayer separation: A Monte Carlo study. Biochim Biophys Acta 897:423–430

    Article  CAS  Google Scholar 

  • Jorgensen WL (1986): Optimized intermolecular potential functions for liquid alcohols. J Phys Chem 90:1276–1284

    Article  CAS  Google Scholar 

  • Jorgensen WL (1983): Theoretical studies of medium effects on conformational equilibria. J Phys Chem 87:5304–5312

    Article  CAS  Google Scholar 

  • Jorgensen WL, Swenson CJ (1985): Optimized intermolecular potential functions for amides and peptides. Structure and properties of liquid amides. J Am Chem Soc 107:569–578

    Article  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983): Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kuczera K, Wiorkiewicz-Kuczera J, Karplus M (1993): MOLVIB: Program for Vibrational Spectroscopy, Program Charmm (computer program). Version 22

    Google Scholar 

  • Kuczera K, Gao J, MacKerell AD Jr, Karplus M (1996): Empirical parameters for the ionic species of amino acids and protein termini. (Manuscript in preparation)

    Google Scholar 

  • MacKerell AD Jr (1994): Empirical force field parameters for sulfate and methylsulfate. (unpublished)

    Google Scholar 

  • MacKerell AD Jr (1995): Molecular dynamics simulation analysis of a sodium dodecyl sulfate micelle in aqueous solution: Decreased fluidity of the micelle hydrocarbon interior. J Phys Chem 99:1846–1855

    Article  CAS  Google Scholar 

  • MacKerell AD Jr, Karplus M (1991): Importance of attractive van der Waals contributions in empirical energy function models for the heat of vaporization of polar liquids. J Phys Chem 95:10559–10560

    Article  CAS  Google Scholar 

  • MacKerell AD Jr, Karplus M (1996a): Allatom empirical energy function for simulations of peptides and proteins. (Manuscript in preparation)

    Google Scholar 

  • MacKerell AD Jr, Karplus M (1996b): Parameterization of histidine for molecular modeling and molecular dynamics simulations. (Manuscript in preparation)

    Google Scholar 

  • MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Roux B, Schlenkrich M, Smith J, Stote R, Straub J, Wiorkiewicz-Kuczera J, Karplus M (1992): Self-consistent parameterization of biomolecules for molecular modeling and condensed phase simulations. Biophys J 6:A143

    Google Scholar 

  • MacKerell AD Jr, Wiorkiewicz-Kuczera J, Karplus M (1995): An all-atom empirical energy function for the simulation of nucleic acids. J Amer Chem Soc: 117:11946 – 11975

    Article  CAS  Google Scholar 

  • MacKerell AD Jr, Field MJ, Fischer S, Watanabe M, Karplus M (1996): All-hydrogen alkane potential for use in aliphatic groups of macromolecules. (Manuscript in preparation)

    Google Scholar 

  • Mahendra P, Agarwal A, Khandelwal DP, Bist HD (1984): Dynamic disorder of (CH3)4N+ in (CH3)4NX (X = Cl, Br and I) as studied by Raman spectroscopy. J Mol Struct 112:309–316

    Article  Google Scholar 

  • Mahendra P, Raghuvanshi GS, Bist HD (1982): Vibrational studies and phase transitions in tetramethylammonium chloride. Chem Phys Lett 92:85–92

    Article  Google Scholar 

  • Mannig J, Klimkowski VJ, Siam K, Ewbank JD, Schäfer L (1986): Ab initio structural investigation of methyl and ethyl carbamate and carbamy choline. J Mol Struct (THEOCHEM) 139:305–314

    Article  Google Scholar 

  • Marrink S-J, Berendsen HJC (1994): Simulation of water transport through a lipid membrane. J Phys Chem 98:4155–4168

    Article  CAS  Google Scholar 

  • Millero FJ (1971): The molal volumes of electolytes. Chem Rev 71:147–176

    Article  CAS  Google Scholar 

  • Möller P, Plesset MS (1934): Note an an approximation treatment for many-electron systems. Phys Rev 46:618–622

    Article  Google Scholar 

  • Moravie RM, Coret J, (1974): Conformational behaviour and vibrational spectra of methyl propionate. Chem Phys Lett 26:210–214

    Article  CAS  Google Scholar 

  • Neria E, Fischer S, Karplus M (1996): Simulation of activation free energies in molecular systems. J Chem Phys (Submitted)

    Google Scholar 

  • Pascher I, Lundmark M, Nyholm P-G, Sundeil S (1992): Crystal structures of membrane lipids. Biochem Biophys Acta 1113:329–373

    Article  Google Scholar 

  • Pearson RH, Pascher I (1979): The molecular structure of lecithin dihydrate. Nature 281:499–501

    Article  PubMed  CAS  Google Scholar 

  • Rao BG, Singh UC (1989): Hydrophobic hydration: A free energy perturbation study. J Am Chem Soc 111:3125

    Article  CAS  Google Scholar 

  • Reiher WE III (1985): Theoretical studies of hydrogen bonding (dissertation). Cambridge, MA: Harvard University

    Google Scholar 

  • Roux B (1990): Theoretical study of ion transport in the gramicidin a channel (dissertation). Cambridge, MA: Harvard University

    Google Scholar 

  • Schlenkrich M (1992): Entwicklung und anwendung eines kraftfeldes zur simulation von phospholipidmembransystemen (dissertation). Darmstadt, Germany: Technischen Hochschule

    Google Scholar 

  • Singer SJ, Nicolson GL (1972): The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  PubMed  CAS  Google Scholar 

  • Singh UC, Kollman PA (1984): An approach to computing electrostatic charges for molecules. J Comp Chem 5:129–145

    Article  CAS  Google Scholar 

  • Small DM (1986): The physical chemistry of lipids. New York: Plenum

    Google Scholar 

  • Stote RH, States DJ, Karplus M (1991): On the treatment of electrostatic interactions in biomolecular simulation. Chimie Physique 88:2419–2433

    CAS  Google Scholar 

  • Stouch TR, Ward KB, Altieri A, Hagler AT (1991): Simulations of lipid crystals: Characterization of potential energy functions and parameters for lecithin molecules. J Comp Chem 12:1033–1046

    Article  CAS  Google Scholar 

  • Timmermans J (1950): Physico-Chemical Constants of Pure Organic Compounds. Elsevier: Amsterdam

    Google Scholar 

  • Venable RM, Zhang Y, Hardy BJ, Pastor RW (1993): Molecular dynamics simulations of a lipid bilayer and of hexadecane: An investigation of membrane fluidity. Science 262:223–226

    Article  PubMed  CAS  Google Scholar 

  • Vegard L, Sollesnes K (1927): Structure of isomorphic substances N(CH3)4X. Phil Mag 4:985–1001

    CAS  Google Scholar 

  • Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986): An all atom force field for simulations of proteins and nucleic acids. J Comp Chem 7:230–252

    Article  CAS  Google Scholar 

  • Wiberg KB, Laidig KE (1987): Barriers to rotation adjacent to double bonds. 3. The C—O barrier in formic acid, methyl formate, acetic acid, and methyl acetate. The origin of ester and amide “Resonance”. J Am Chem Soc 109:5935–5943

    Article  CAS  Google Scholar 

  • Wiberg KB, Laidig KE (1988): Acidity of (Z)- and (E)-methyl acetates: Relationship of meldrum’s acid. J Am Chem Soc 110:1872–1874

    Article  CAS  Google Scholar 

  • Williams G, Owen NL, Sheridan J (1971): Spectroscopic studies of some substituted methyl formates. Trans Faraday Soc 67:922–949

    Article  CAS  Google Scholar 

  • Woolf TB, Roux B (1994a): Conformational flexibility of o-phosphorylcholine and o-phosphorylethanolamine: A molecular dynamics study of solvation effects. J Am Chem Soc 116:5916–5926

    Article  CAS  Google Scholar 

  • Woolf TB, Roux B (1994b): Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. Proc Natl Acad Sci USA 91:11631–11635

    Article  PubMed  CAS  Google Scholar 

  • Wyckof RWG (1928): The crystal structure of tetramethylammonium halides. Z Kristallogr 67:91–105

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Schlenkrich, M., Brickmann, J., MacKerell, A.D., Karplus, M. (1996). An Empirical Potential Energy Function for Phospholipids: Criteria for Parameter Optimization and Applications. In: Merz, K.M., Roux, B. (eds) Biological Membranes. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-8580-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8580-6_2

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-8582-0

  • Online ISBN: 978-1-4684-8580-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics