Skip to main content

Association of Rei Immunoglobulin Light Chain VL Domains: The Functional Linearity Of Parameters in Equilibrium Analytical Ultracentrifuge Models for Self-Associating Systems

  • Chapter
Modern Analytical Ultracentrifugation

Abstract

The analytical ultracentrifuge has had wide application in the characterization of the structure, interaction and function of macromolecules in solution. This includes the determination of molecular weight, the characterization of shape, the determination of subunit stoichiometry, the quantification of ligand binding, the quantification of ligand-binding-promoted conformational changes and the characterization of macromolecular assembly processes (Schachman, 1992). In recent years, however, other technologies have been developed which can make some of the relevent measurements with equal or greater precision, often using less material. For instance, molecular weight can now be routinely determined by gene or protein sequencing and by mass spectroscopic methods, especially electrospray (ES) and matrix-assisted laser-desorption (MALD) MS (Carr, et al, 1991). Ligand binding can be quantified by classical spectroscopic and radiochemical methods as well as by microcalorimetry (Freire, et al, 1990). Ligand binding promoted conformational changes can be characterized by time- resolved fluorescence anisotropy (Lakowicz, 1983; Beechem, et al, 1986; Waxman, et al, 1994) although, the centrifuge still has a major impact in this area (Kirschner and Schachman, 1973a; Kirschner and Schachman, 1973b; Howlett and Schachman, 1977; Eisenstein, et al, 1990) The thermodynamic characterization of macromolecular assembly processes, however, is an area where the analytical ultracentrifuge has few rivals (Adams and Lewis, 1968; Roark and Yphantis, 1969; Hensley, et al, 1975b; Blackburn and Noltman, 1981; Minton and Lewis, 1981; Wilf and Minton, 1981; Correia, et al, 1985; Duong, et al., 1986; Hensley, et al, 1986; Lewis and Youle, 1986; Chatelier and Minton, 1987; Ross, et al, 1991; Rivas, et al, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, E. T. J. and Lewis, M. S. (1968): Sedimentation equilibrium in reacting systems. VI. Some applications to indefinite self-associations. Studies with beta-lactoglobulin A, Biochemistry 7, 1044–53.

    Article  PubMed  CAS  Google Scholar 

  • Bates, D. M. and Watts, D. G. (1988): Nonlinear Regression Analysis and Its Applications, New York, Wiley Interscience.

    Book  Google Scholar 

  • Bates, D. M. and Watts, D. G. (1991): Model building in chemistry using profile t and trace plots., Chemometrics and Intelligent Laboratory Systems 10, 107–116.

    Article  CAS  Google Scholar 

  • Beechem, J. M., Knutson, J. R., and Brand, L. (1986): Global analysis of multiple dye fluorescence anisotropy experiments on proteins, Biochem Soc Trans 14, 832–5.

    PubMed  CAS  Google Scholar 

  • Bevington, P. R. (1969): Data Reduction and Error Analysis for the Physical Sciences, New York, McGraw Hill Book Company.

    Google Scholar 

  • Blackburn, M. N. and Noltman, E. A. (1981): Evidence for an intermediate in the denaturation and assembly of phosphoglucose isomerase., Archives of Biochemistry and Biophysics 212, 162–169.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, I., Watts, D. G., Soneson, K. K., and Hensley, P. (1994a): Determining the Confidence Intervals of Parameters from Analysis of Equilibrium Analytical Ultracentrifuge Data. In: Methods in Enzymology, L. Brand and M. L. Johnson, ed. s, New York, Academic Press, (in press).

    Google Scholar 

  • Brooks, I., Wetzel, R., Chan, W., Lee, G., Watts, D. G., Soneson, K. K., and Hensley, P. (1994b): A Mutational Analysis of the Relation Between Domain-Domain Interactions in Solution, Inclusion Body and Fibril Formation in vitro for REI, an Immunoglobulin VL(Bence-Jones) Domain Expressed in E. coli, (submitted).

    Google Scholar 

  • Buxbaum, J. (1992): Mechanisms of disease: Monoclonal immunoglobulin deposition, Hemat. Oncol. Clin. North America 6, 323–346.

    CAS  Google Scholar 

  • Cantor, C. R. and Schimmel, P. R. (1980): Biophysical chemistry, pt. 2: Techniques for the study of biological structure and function., San Francisco, W.H. Freeman and Co.

    Google Scholar 

  • Carr, S. A., Hemling, M. E., Bean, M. F., and Roberts, G. D. (1991): Integration of mass spectrometry in analytical biotechnology, Analytical Chemistry 63, 2802–2824.

    Article  PubMed  CAS  Google Scholar 

  • Chan, W., Hensley, P., Lee, G., and Wetzel, R. (1993): Secretion into the Escherichia coli periplasm of the immunoglobulin VL domain REI: inclusion body formation, purification, and dimerization of a series of point mutants, Ms. in preparation.

    Google Scholar 

  • Chatelier, R. C. and Minton, A. P. (1987): Sedimentation equilibrium in macromolecular solutions of arbitrary concentration. I. Self-associating proteins, Biopolymers 26, 507–24.

    Article  PubMed  CAS  Google Scholar 

  • Correia, J. J., Shire, S., Yphantis, D. A., and Schuster, T. M. (1985): Sedimentation equilibrium measurements of the intermediate-size tobacco mosaic virus protein polymers, Biochemistry 24, 3292–7.

    Article  PubMed  CAS  Google Scholar 

  • Creighton, T. E. (1984): Proteins: Structures and Molecular Properties, New York, W. H. Freeman.

    Google Scholar 

  • Draper, N. and Smith, H. (1981): Applied Regression Analysis, Second Edition, New York, Wiley-Interscience.

    Google Scholar 

  • Duong, L. T., Eisenstein, E., Green, S. M., Ornberg, R. L., and Hensley, P. (1986): The quaternary structure of ornithine transcarbamoylase and arginase from Saccharomyces cerevisiae, J Biol Chem 261, 12807–13.

    PubMed  CAS  Google Scholar 

  • Eisenstein, E., Markby, D. W., and Schachman, H. K. (1990): Heterotopic effectors promote a global conformational change in aspartate transcarbamoylase, Biochemistry 29, 3724–31.

    Article  PubMed  CAS  Google Scholar 

  • Epp, O., Colman, P., Fehlhammer, H., Bode, W., Schiffer, M., Huber, R., and Palm, W. (1974): Crystal and molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI, Eur. J. Biochem. 45, 513–524.

    Article  PubMed  CAS  Google Scholar 

  • Freire, E., Mayorga, O. L., and Straume, M. (1990): Isothermal Titration Calorimetry, Analytical Chemistry 62, 950A–959A.

    Article  CAS  Google Scholar 

  • Helms, L. R. and Wetzel, R. (1994): Dramatic reduction in domain folding stability by a point mutation, Asp82 to Val82, associated with light chain deposition disease., (submitted).

    Google Scholar 

  • Hensley, P., Edelstein, S. J., Wharton, D. C., and Gibson, Q. H. (1975b): Conformation and spin state in methemoglobin, J Biol Chem 250, 952–60.

    PubMed  CAS  Google Scholar 

  • Hensley, P., Moffat, K., and Edelstein, S. J. (1975a): Influence of inositol hexaphosphate binding on subunit dissociation in methemoglobin, J Biol Chem 250, 9391–6.

    PubMed  CAS  Google Scholar 

  • Hensley, P., O., Keefe, M. C., Spangler, C. J., Osborne, J. C. J., and Vogel, C. W. (1986): The effects of metal ions and temperature on the interaction of cobra venom factor and human complement factor B, J Biol Chem 261, 11038–44.

    PubMed  CAS  Google Scholar 

  • Howlett, G. J. and Schachman, H. K. (1977): Allosteric regulation of aspartate transcarbamoylase. Changes in the sedimentation coefficient promoted by the bisubstrate analogue N-(phosphonacetyl)-L-aspartate, Biochemistry 16, 5077–83.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, M. L. and Faunt, L. M. (1992): Parameter estimation by least-squares methods. In: Methods Enzymol, L. Brand and M. L. Johnson, ed. s, New York, Academic Press, 1–37.

    Google Scholar 

  • Johnson, M. L. and Staume, M. (1994): Comments on the Analysis of Sedimentation Equilbrium Experiments. In: Modern Analytical Ultracentrifugation: Acquisition and Interpretation of Data for Biological and Synthetic Polymer Systems, T. M. Schuster and T. M. Laue, ed. s, Boston, MA, Birkhauser Boston, Inc., (this volume).

    Google Scholar 

  • Kirschner, M. W. and Schachman, H. K. (1973a): Local and gross conformational changes in aspartate transcarbamylase, Biochemistry 12, 2997–3004.

    Article  PubMed  CAS  Google Scholar 

  • Kirschner, M. W. and Schachman, H. K. (1973b): Conformational studies on the nitrated catalytic subunit of aspartate transcarbamylase, Biochemistry 12, 2987–97.

    Article  PubMed  CAS  Google Scholar 

  • Kosaka, M., Iishi, Y., Okagawa, K., Saito, S., Sugihara, J., and Muto, Y. (1989): Tetrameric Bence-Jones protein in the immunoproliferative diseases, Am. J. Clin. Path. 91, 639–646.

    PubMed  CAS  Google Scholar 

  • Kratky, O., Leopold, H., and Stabinger, H. (1973): Determination of the partial specific volume of proteins by the mechanical oscillator tecnhique. In: Methods in Enzymology. Enzyme Structure, part D, C. H. W. Hirs and S. N. Timasheff, ed. s, New York, Academic Press, 98–110.

    Google Scholar 

  • Lakowicz, J. R. (1983): Principles of Fluorescence Spectroscopy, New York, Plenum. Association of REI Immunoglobulin Light Chain VL Domains

    Google Scholar 

  • Laue, T. M., Shah, B. D., Ridgeway, T. M., and Pelletier, S. L. (1992): Computer-Aided Interpretation of Analytical Sedimentation Data for Proteins. In: Analytical Ultracentrifugation in Biochemistry and Polymer Science, S. E. Harding, A. J. Rowe and J. C. Horton, ed. s, Cambridge, Great Britain, The Royal Society of Chemistry, 90–125.

    Google Scholar 

  • Lee, G., Chan, W., Hurle, M. R., DesJarlais, R. L., Watson, F., Sathe, G. M., and Wetzel, R. (1993): Strong inhibition of fibrinogen binding to platelet receptor allbĂźlllby RGD sequences installed into a presentation scaffold, Protein Engineering 6, 745–754.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, M. S. and Youle, R. J. (1986): Ricin subunit association. Thermodynamics and the role of the disulfide bond in toxicity, J Biol Chem 261, 11571–7.

    PubMed  CAS  Google Scholar 

  • Minton, A. P. (1994): Conservation of signal: a new algorithm for the elimination of reference concentration as an independent parameter in the analysis of sedimentation equilbrium data. In: Modern Analytical Ultracentrifugation: Acquisition and Interpretation of Data for Biological and Synthetic Polymer Systems, T. M. Shuster and T. M. Laue, ed. s, Boston, MA, Birkhauser Boston, Inc., (This volume).

    Google Scholar 

  • Minton, A. P. and Lewis, M. S. (1981): Self-association in highly concentrated solutions of myoglobin: a novel analysis of sedimentation equilibrium of highly nonideal solutions, Biophys Chem 14,317–24. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. ( 1986 ): Numerical Recipies — The Art of Scientific Computing, New York, Cambridge University Press.

    Google Scholar 

  • Rivas, G., Ingham, K. C., and Minton, A. P. (1992): Calcium-linked self- association of human complement C1s, Biochemistry 31, 11707–12.

    Article  PubMed  CAS  Google Scholar 

  • Roark, D. E. and Yphantis, D. A. (1969): Studies of self-associating systems by equilibrium ultracentrifugation, Ann NY. Acad. Sci. 164, 245–78.

    Article  PubMed  CAS  Google Scholar 

  • Ross, P. D., Howard, F. B., and Lewis, M. S. (1991): Thermodynamics of antiparallel hairpin-double helix equilibria in DNA oligonucleotides from equilibrium ultracentrifugation, Biochemistry 30, 6269–75.

    Article  PubMed  CAS  Google Scholar 

  • Schachman, H. K. (1992): Is There a Future for the Ultracentrifuge? In: Analytical Ultracentrifugation in Biochemistry and Polymer Science, S. E. Harding, A. J. Rowe and J. C. Horton, ed. s, Cambridge, Great Britain, The Royal Society of Chemistry, 3–15.

    Google Scholar 

  • Stevens, F. J., Westholm, F. A., Solomon, A., and Schiffer, M. (1980): Self- association of human immunoglobulin kI light chains: Role of the third hypervariable region, Proc. Natl Acad. Sci. USA 77, 1144–1148.

    Article  PubMed  CAS  Google Scholar 

  • Straume, M. and Johnson, M. L. (1992): Monte Carlo method for determining complete confidence probability distributions of estimated model parameters. In: Methods Enzymol, L. Brand and M. L. Johnson, ed. s, New York, Academic Press, 117–29.

    Google Scholar 

  • Watts, D. G. (1991): Model building in chemistry using profile t and trace plots., Chemometrics and intelligent laboratory systems 10, 107–116.

    Article  Google Scholar 

  • Watts, D. G. (1994): How good are parameter estimates from nonlinear models? In: Methods in Enzymology, L. Brand and M. L. Johnson, ed. s, New York, NY, Academic Press, (in press).

    Google Scholar 

  • Waxman, E., Laws, W. R., Laue, T. M., and Ross, J. B. A. (1994): Refining Hydrodynamic Shapes of Proteins: The Combination of Data from Analytical Ultracentrifugation and Time-Resolved Fluorescence Anisotropy Decay. In: Modern Analytical Ultracentrifugation: Acquisition and Interpretation of Data for Biological and Synthetic Polymer Systems, T. M. Schuster and T. M. Laue, ed. s, Boston, MA, Birkhouser Boston, Inc, (This Volume).

    Google Scholar 

  • Wetzel, R. (1992): Protein aggregation in vivo: Bacterial inclusion bodies and mammalian amyloid. In: Stability of Protein Pharmaceuticals: In Vivo Pathways of Degradation and Strategies for Protein Stabilization, T. J. Ahern and M. C. Manning, ed. s, New York, Plenum Press, 43–88.

    Google Scholar 

  • Wetzel, R. (1994): Aggregation - The Dark Side of Protein Folding, Trends in Biotechnology 12, (in press).

    Google Scholar 

  • Wetzel, R., Hurle, M. R., Li, L., Helms, L., and Chan, W. (1993): Molecular basis of sequence effects in light chain amyloidosis and light chain deposition disease, Submitted.

    Google Scholar 

  • Wilf, J. and Minton, A. P. (1981): Evidence for protein self-association induced by excluded volume. Myoglobin in the presence of globular proteins, Biochim Biophys Acta 670, 316–22.

    PubMed  CAS  Google Scholar 

  • Zimyatnin, A. A. (1972): Protein volume in solution., Prog. Biophys. Mol. Biol. 24, 109–123.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Boston

About this chapter

Cite this chapter

Brooks, I. et al. (1994). Association of Rei Immunoglobulin Light Chain VL Domains: The Functional Linearity Of Parameters in Equilibrium Analytical Ultracentrifuge Models for Self-Associating Systems. In: Schuster, T.M., Laue, T.M. (eds) Modern Analytical Ultracentrifugation. Emerging Biochemical and Biophysical Techniques. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6828-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6828-1_2

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6830-4

  • Online ISBN: 978-1-4684-6828-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics