Skip to main content

Analytical Ultracentrifugation and its use in Biotechnology

  • Chapter
Modern Analytical Ultracentrifugation

Part of the book series: Emerging Biochemical and Biophysical Techniques ((EBBT))

Abstract

Analytical ultracentrifugation has played a critical role in laying the foundations for modern molecular biology. Among its achievements are the demonstration that proteins are macromolecules rather than complexes of smaller units (Svedberg and Fahraeus 1926), and direct support for the semi-conservative replication of DNA as proposed by Watson and Crick (Meselson and Stahl 1958). Unlike techniques such as SDS polyacrylamide gel electrophoresis (SDS PAGE) or gel permeation chromatography (GPC), analytical ultracentrifugation can be used to determine absolute molecular weights without the use of molecular weight standards or interference from the sieving matrix used for separation. Mass spectrometry technology has improved tremendously over the last 5 years and routinely enables researchers to determine molecular weights of macromolecules far more accurately than by analytical ultracentrifugation. However, molecular weights of associating macromolecules in solution are still best determined by centrifugation. Quantitation of these interactions by determining association constants is most easily done by sedimenting solutions to equilibrium and fitting the resulting concentration gradient to a specific association model. The interactions between molecules in oligomeric proteins, self-associating proteins, and interacting systems such as receptor-ligand complexes can be investigated by analytical ultracentrifugation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arakawa, T. and D. A. Yphantis. (1987): Molecular weight of recombinant human tumor necrosis factor-a. J. Biol. Chem. 262: 7484–7485.

    PubMed  CAS  Google Scholar 

  • Bach, R. R. (1988): Initiation of coagulation by tissue factor. CRC Critical Reviews in Biochemistry. 23: 339–368.

    Article  PubMed  CAS  Google Scholar 

  • Blundell, T. L., J. F. Cutfield, S. M. Cutfield, E. Dodson, D. C. Hodgkin, D. A. Mercola and M. Vijayan. (1971): Nature (London). 231: 506–511.

    Article  CAS  Google Scholar 

  • Blundell, T. L., G. Dodson, D. Hodgkin and D. A. Mercola. (1972): Insulin: The structure in the crystal and Its reflection in chemistry and biology. Adv. Protein Chem. 26: 279–402.

    Article  CAS  Google Scholar 

  • Bryant-Greenwood, G. D. (1982): Relaxin as a new hormone. Endocrine Rev. 3 (1): 62 - 90.

    Article  CAS  Google Scholar 

  • Charlwood, P. A. (1957): Partial specific volume of proteins in relation to composition and environment. J. Am. Chem. Soc. 79: 776–781.

    Article  CAS  Google Scholar 

  • Cipolla, D. and S. J. Shire. (1992): Characterization of human tissue factor-surfactant mixed micelles. The Protein Society. San Diego: 80, abstract number S198.

    Google Scholar 

  • Cohn, E. J. and J. T. Edsall. (1965): Proteins, amino Acids and peptides as ions and dipolar ions. New York, Hafner.

    Google Scholar 

  • Correia, J. J. and D. A. Yphantis. (1992): Equilibrium sedimentation in short solution columns. In: Analytical Ultracentrifugation in Biochemistry and Polymer Science, S. E. Harding, A. J. Rowe and J. C. Horton, eds. Cambridge: The Royal Society of Chemistry.

    Google Scholar 

  • Cunningham, B. C., M. Ultsch, A. M. De Vos, M. G. Mulkerrin, K. R. Cluser and J. A. Wells. (1991): Dimerization of the extracellular domain of the human growth hormone receptor by a single growth hormone molecule. Science. 254: 821–825.

    Article  PubMed  CAS  Google Scholar 

  • Edelstein, S. J. and H. K. Schachman. (1967): The simultaneous determination of partial specific volumes and molecular weights with microgram quantities. J. Biol. Chem. 242 (306–311)

    Google Scholar 

  • Eigenbrot, C., M. Randal, C. Quan, J. Burnier, L. O’Connell, E. Rinderknecht and A. A. Kossiakoff. (1991): X-Ray structure of human relaxin at 1.5 A. J. Mol. Biol. 221: 15–21.

    CAS  Google Scholar 

  • Engelmann, H., H. Holtmann, C. Brakebusch, Y. S. Avni, I. Sarov, D. Nophar, E. Hadas, O. Leitner and D. Wallach. (1990): Antibodies to a soluble form of a tumor necrosis factor (TNF) receptor have a TNF- like activity. J. Biol. Chem. 265: 14497–14504.

    PubMed  CAS  Google Scholar 

  • Espevik, T., M. Brockhaus, H. Loetscher, U. Nonstad and R. Shalaby. (1990): Characterization of binding and biological effects of monoclonal antibodies against a human tumor necrosis factor receptor. J. Exptl. Med. 171: 415–426.

    Article  CAS  Google Scholar 

  • Evans, M. I., M.-B. Dougan, A. H. Moawad, W. J. Evans, G. D. Bryant- Greenwood and F. C. Greenwood. (1983): Ripening of the human cervix with porcine ovarian relaxin. Am. J. Obstet. Gynecol. 147 (4): 410–414.

    PubMed  CAS  Google Scholar 

  • Ferraiolo, B. L., M. Cronin, C. Bakhit, M. Roth, M. Chestnut and R. Lyon. (1989): The pharmacokinetics and pharmacodynamics of a human relaxin in the mouse pubic symphysis bioassay. Endocrinology. 125 (6): 2922–2926.

    Article  PubMed  CAS  Google Scholar 

  • Gibbons, R. A. (1972): Physico-chemical methods for the determination of the purity, molecular size and shape of glycoproteins. In: Glycoproteins, Part A, A. Gottschalk, eds. Amsterdam: Elsevier.

    Google Scholar 

  • Giebler, R. (1992): The Optima XL-A: A new analytical ultracentrifuge with a novel precision absorption optical system. In: Analytical Ultracentrifugation in Biochemistry and Polymer Science, S. E. Harding, A. J. Rowe and J. C. Horton, eds. Cambridge: The Royal Society of Chemistry.

    Google Scholar 

  • Goldman, J. and F. H. Carpenter. (1974): Zinc binding, circular dichroism, and equilibrium sedimentation studies of insulin (bovine) and several of its derivatives. Biochemistry 13: 4566–4574.

    Article  PubMed  CAS  Google Scholar 

  • Heller, R. A., K. Song, D. Villaret, R. Margolskee, J. Dunne, H. Hayakawa and G. M. Ringold. (1990): Amplified expression of tumor necrosis factor receptor in cells transfected with Epstein-Barr virus shuttle vector cDNA libraries. J. Biol. Chem. 265: 5708–5717.

    PubMed  CAS  Google Scholar 

  • Hodgkin, D. C. and D. A. Mercola. (1972): In: Handbook of Physiology I, D. Steiner, eds. Washington, D. C.: American Physiological Society.

    Google Scholar 

  • Jeffrey, P. D. and J. H. Coates. (1966): An equilibrium ultracentrifuge study of the effect of ionic strength on the self-association of bovine insulin. Biochemistry 5: 3820–3824.

    Article  CAS  Google Scholar 

  • Kameyama, K. and T. Takagi. (1990): Micellar properties of octylglucoside in aqueous solutions. J. Colloid Interface Sci. 137: 1–10.

    Article  CAS  Google Scholar 

  • Kawashima, N. Fujimoto, N., and Meguro, K. (1985): Determination of critical micelle concentration of several nonionic surfactants by azo-hydrazone tautomerism of anionic dye. J. Coll. Int. Sci. 103: 459.

    Article  CAS  Google Scholar 

  • Koschinsky, M. L., J. E. Tomlinson, T. F. Zioncheck, K. Schwartz, D. L. Eaton and R. M. Lawn. (1991): Apolipoprotein(a): Expression and characterization of a recombinant form of the protein in mammalian cells. Biochemistry. 30: 5044–5051.

    Article  PubMed  CAS  Google Scholar 

  • Kratky, O., H. Leopold and H. Stabinger. (1973): The determination of the partial specific volume of proteins by the mechanical oscillator technique. Methods in Enzymology. New York, Academic Press.

    Google Scholar 

  • Lackner, C., E. Boerwinkle, C. C. Leffert, T. Rahmig and H. H. Hobbs. (1991): Molecular basis of apolipoprotein(a) isoform size heterogeneity as revealed by pulsed-field gel electrophoresis. J. Clin. Invest. 87: 2153–2161.

    Article  PubMed  CAS  Google Scholar 

  • Laue, T. M. (1992): On-line data acquisition and analysis from the Rayleigh interferometer. In: Analytical Ultracentrifugation in Biochemistry and Polymer Science, S. E. Harding, A. J. Rowe and J. C. Horton, eds. Cambridge: The Royal Society of Chemistry.

    Google Scholar 

  • Leonard, C. K., M. Spellman, L. Riddle, R. J. Harris, J. N. Thomas and T. J. Gregory. (1990): Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type I recombinant human immunodeficiency virus envelope glycoprotein (gpl20) expressed in Chinese hamster ovary cells. J. Biol. Chem. 265: 10373–10382.

    PubMed  CAS  Google Scholar 

  • MacLennan, A., R. C. Green, G. D. Bryant-Greenwood, F. C. Greenwood and R. F. Seamark. (1981): Cervical ripening with combinations of vaginal prostaglandin F2a, estradiol and relaxin. Obstet Gynecol. 58 (5): 601–604.

    PubMed  CAS  Google Scholar 

  • MacLennan, A. H., R. C. Green, P. Grant and R. Nicolson. (1986): Ripening of the human cervix and induction of labor with intracervical purified porcine relaxin. Obstet. Gynec. 68 (5): 598–601.

    PubMed  CAS  Google Scholar 

  • Marque, J. (1992): Personal communication.

    Google Scholar 

  • McMeekin, T. L. and K. Marshall. (1952): Specific volumes of proteins and their relationship to their amino acid contents. Science. 116: 142–143.

    Article  PubMed  CAS  Google Scholar 

  • Meselson, M. and F. W. Stahl. (1958): Proc. Natl. Acad. Sci. 44: 671.

    Article  PubMed  CAS  Google Scholar 

  • Moore, W. V. and P. Leppert. (1980): Role of aggregated human growth hormone (hGH) in development of antibodies to hGH. J. Clin. Endocrin. Metabol. 51: 691.

    Article  CAS  Google Scholar 

  • Narhi, O., L. and T. Arakawa. (1987): Dissociation of recombinant tumor necrosis factor-a studied by gel permeation chromatography. Biochem. Biophysical Res. Comm. 147: 740–746.

    Article  CAS  Google Scholar 

  • Nemerson, Y. (1988): Tissue factor and hemostasis. Blood. 71: 1–8.

    PubMed  CAS  Google Scholar 

  • Paborsky, L. R., Tate, K. M., Harris, R. J., Yansura, D. G., Band, L., McCray, G., Gorman, C. M., O’Brien, D. P., Chang, J. Y., Swartz, J. R., Fung, V.P., Thomas, J. N. and Yehar, G. A. (1989): Purification of recombinant human tissue factor. Biochemistry 28: 8072–8077.

    Article  PubMed  CAS  Google Scholar 

  • Pennica, D., W. J. Kohr, B. M. Fendly, S. J. Shire, H. E. Raab, P. E. Borchardt, M. Lewis and D. V. Goeddel. (1992): Characterization of a recombinant extracellular domain of the type I tumor necrosis factor receptor: evidence for tumor necrosis factor-a induced receptor aggregation. Biochemistry 31: 1134–1141.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, C. M., A. Nykjaer, B. S. Christiansen, L. Heickendorff, S. C. Mogensen and B. Moller. (1989): Bioactive human recombinant tumor necrosis factor a: An unstable dimer? Eur. J. Immunol. 19: 1887–1894.

    Article  Google Scholar 

  • Phillips, M., A. V. Lembertas, V. N. Schumaker, R. M. Lawn, S. J. Shire and T. F. Zioncheck. (1993): Physical properties of recombinant apolipoprotein (a) and its association with LDL to form an Lp(a)-like complex. Biochemistry. 32: 3722–3728.

    Article  PubMed  CAS  Google Scholar 

  • Pinkard, R. N., D. M. Weir and W. H. McBride. (1967): Factors influencing immune response: I. Effects of the physical state of the antigen and use of lymphoreticular cell proliferation on the response to intravenous injection of bovine serum albumin in rabbits. Clin. Exp. Immunol. 2: 331.

    Google Scholar 

  • Rosevear, P., T. VanAken, J. Baxter and S. Ferguson-Miller. (1980): Alkyl glucoside detergents: A simpler synthesis and their effects on kinetic and physical properties of cytochrome c oxidase. Biochemistry. 19: 4108–4115.

    Article  PubMed  CAS  Google Scholar 

  • Schwabe, C. and S. J. Harmon. (1978): A comparative circular dichroism study of relaxin and insulin. BBRC. 84 (2): 374–380.

    PubMed  CAS  Google Scholar 

  • Shao, Z., Y. Li, R. Krishnamoorthy, T. Chermak and A. K. Mitra. (1993): Differential effects of anionic, cationic, nonionic, and physiologic surfactants on the dissociation, alpha-chymotryptic degradation and internal absorption of insulin hexamers. Phar. Res. 10: 243.

    Article  CAS  Google Scholar 

  • Sherwood, C. D. and E. M. O’Byrne. (1974): Purification and characterization of porcine relaxin. Arch Biochem Biophys. 160: 185–196.

    Article  PubMed  CAS  Google Scholar 

  • Sherwood, O. D. (1988): Relaxin. In: The Physiology of Reproduction, E. Knobil and J. Neill, eds. New York: Raven Press.

    Google Scholar 

  • Shire, S. J., L. A. Holladay and E. Rinderknecht. (1991): Self- Association of human and porcine relaxin as assessed by analytical ultracentrifugation and circular dichroism. Biochemistry. 30: 7703–7711.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. A. and C. Baglioni. (1987): The active form of tumor necrosis factor is a trimer. J. Biol. Chem. 262: 6951–6954.

    PubMed  CAS  Google Scholar 

  • Steinetz, B. G., V. L. Beach and R. L. Kroc. (1959): The physiology of relaxin in laboratory animals. In: Recent Progress in the Endricrinology of Reproduction, C. W. LLoyd, eds. New York: Academic Press.

    Google Scholar 

  • Svedberg, T. and R. Fahraeus. (1926): A new method for the determination of the molecular weight of the proteins. J. Am. Chem. Soc. 48: 430.

    Article  Google Scholar 

  • Takagi, T. (1990): Application of low-angle laser light scattering detection in the field of biochemistry. J. Chrom. 506: 409–416.

    Article  CAS  Google Scholar 

  • Tanford, C., Y. Nozaki, J. A. Reynolds and S. Makino. (1974): Molecular characterization of proteins in detergent solutions. Biochemistry. 13: 2369–2376.

    Article  PubMed  CAS  Google Scholar 

  • Tanford, C., Y. Nozaki and M. F. Rohde. (1977): Size and shape of globular micelles formed in aqueous solution by n-alkyl polyoxyethylene ethers. J. Phys. Chem. 81: 1555–1560.

    Article  CAS  Google Scholar 

  • Tartaglia, L. A., R. F. Weber, I. S. Figari, C. Reynolds, M. A. Pallidino and D. V. Goeddel. (1991): Proc. Natl. Acad. Sci. U. S. A. 88: 9292–9296.

    Article  PubMed  CAS  Google Scholar 

  • Teller, D. C. (1972): Characterization of proteins by sedimentation equilibrium in the analytical ultracentrifuge. Meth. Enzym. 27: 346–441.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Boston

About this chapter

Cite this chapter

Shire, S.J. (1994). Analytical Ultracentrifugation and its use in Biotechnology. In: Schuster, T.M., Laue, T.M. (eds) Modern Analytical Ultracentrifugation. Emerging Biochemical and Biophysical Techniques. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6828-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6828-1_15

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6830-4

  • Online ISBN: 978-1-4684-6828-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics