Skip to main content

Computer Simulation of the Sedimentation of Ligand-Mediated and Kinetically Controlled Macromolecular Interactions

  • Chapter
Modern Analytical Ultracentrifugation

Part of the book series: Emerging Biochemical and Biophysical Techniques ((EBBT))

Abstract

Ultracentrifugal characterization of macromolecular interactions was initiated shortly after construction of the first analytical ultracentrifuge by Svedberg and his co-workers in 1925-26. Thus, following the immediate demonstration that proteins are distinct molecular entities with well defined mass and shape, not ill defined colloids, Svedberg (Svedberg and Pedersen, 1940) anticipated modern concepts of the subunit structure of proteins. Additionally, the prophetic studies on ligand-mediated association-dissociation of hemocyanins (Marimoto and Kegeles, 1971; Kegeles and Cann, 1978; Roxby et al. 1974; Miller and Van Holde, 1974) were initiated (Svedberg and Pedersen, 1940). Self-association of proteins and their interactions with each other and with low molecular weight ligands are central to current biological thought especially as they pertain to the mechanism of regulatory processes. Over the years one seminal finding for the development of biochemistry and molecular biology followed another. Early on, Heidelberger and Pedersen (1937) demonstrated the existence of soluble, protein antigen-antibody complexes in the antigen excess zone of the precipitin reaction. Subsequent ultracentrifuge studies of the soluble complexes by Singer et al. (Singer, 1965) provided direct confirmation of the framework theory of antigen- antibody precipitate and led, in conjunction with electrophoretic analysis, to thermodynamic characterization of antigen- antibody reactions via application of the Goldberg theory (Goldberg, 1952).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beiford GG and Beiford RL (1962): Sedimentation in Chemically Reacting Systems. II. Numerical Calculations for Dimerization. J. Chem. Phys. 37: 1926–1932.

    Article  Google Scholar 

  • Bethune JL (1970): Directed Transport of Monomer-Single Polymer Systems. A Comparison of the Countercurrent Analog and Asymptotic Approaches. J. Phys. Chem. 74: 3837–3845.

    Article  CAS  Google Scholar 

  • Bethune JL and Grill PJ (1967): The Effect of Intermediates upon the Transport Properties of Polymerizing Systems. I. Monomer, Trimer and Nonamer. Biochemistry 6: 796–800.

    Article  PubMed  CAS  Google Scholar 

  • Bethune JL and Kegeles G (1961): Countercurrent Distribution of Chemically Reacting Systems. III. Analogs of Moving Boundary Electrophoresis and Sedimentation. J. Phys. Chem. 65: 1761–1764.

    Article  CAS  Google Scholar 

  • Brown RA and Timasheff SN (1959): Applications of Moving Boundary Electrophoresis to Protein Systems. In: Electrophoresis. Theory, Methods and Applications, Bier M ed. Chapter 8 New York: Academic Press.

    Google Scholar 

  • Cann JR (1970): Interacting Macromolecules. The Theory and Practice of Their Electrophoresis, UItracentrifugation, and Chromatography, Chapter 4, New York: Academic Press.

    Google Scholar 

  • Cann JR (1973): Theory of Zone Sedimentation for Non-Cooperative Ligand- Mediated Interactions. Biophys. Chem. 1: 1–10.

    Article  CAS  Google Scholar 

  • Cann JR (1978a): Ligand-Binding by Associating Systems. Methods Enzymol. 48: 299–307.

    Article  PubMed  CAS  Google Scholar 

  • Cann JR (1978b): Measurements of Protein Interactions Mediated by Small Molecules Using Sedimentation Velocity. Methods Enzymol. 48: 242–248.

    Article  PubMed  CAS  Google Scholar 

  • Cann JR (1982a): Theory of sedimentation for Antigen-Antibody Reactions: Effect of Antibody Heterogeneity on the Shape of the Pattern. Mol. Immun. 19: 505–514.

    Article  CAS  Google Scholar 

  • Cann JR (1982b): Theory of sedimentation for Ligand-Mediated Heterogeneous Association-Dissociation Reactions. Biophys. Chem. 19: 41–49.

    Article  Google Scholar 

  • Cann JR (1987): Theory of Electrophoresis of Hybridizing Enzymes with Kinetic Control: Implications for Population Genetics of Electrophoretic Markers. J. Theor. Biol. 127: 461–477.

    Article  PubMed  CAS  Google Scholar 

  • Cann JR (1989): Phenomenological Theory of Gel Electrophoresis of Protein- Nucleic Acid Complexes. J. Biol. Chem. 264: 17032–17040.

    PubMed  CAS  Google Scholar 

  • Cann JR and Goad WB (1965): Theory of Moving Boundary Electrophoresis of Reversibly Interacting Systems. J. Biol. Chem. 240: 148–155.

    PubMed  CAS  Google Scholar 

  • Cann JR and Goad WB (1970): Bimodal Sedimenting Zones Due to Ligand Mediated Interactions. Science 170: 441–445.

    Article  PubMed  CAS  Google Scholar 

  • Cann JR and Goad WB (1972): Theory of Sedimentation for Ligand-Mediated Dimerization. Arch. Biochem. Biophys. 153: 603–609.

    Article  PubMed  CAS  Google Scholar 

  • Cann JR and Hinman ND (1976): Hummel-Dryer Gel Chromatographic Procedure as Applied to Ligand-Mediated Association. Biochemistry 15: 4614–4622.

    Article  PubMed  CAS  Google Scholar 

  • Cann JR and Kegeles G (1974): Theory of Sedimentation for Kinetically Controlled Dimerization Reactions. Biochemistry 13: 1868–1874.

    Article  PubMed  CAS  Google Scholar 

  • Cann JR and Oates DC (1973): Theory of Electrophoresis and Sedimentation for Some Kinetically Controlled Interactions. Biochemistry 12: 1112–1119.

    Article  PubMed  CAS  Google Scholar 

  • Claverie J-M, Dreux H and Cohen R (1975): Sedimentation of Generalized Systems of Interacting Particles. I. Solution of Complete Lamm Equations. Biopolymers 14: 1685–1700.

    Article  PubMed  CAS  Google Scholar 

  • Cohen R and Claverie J-M (1975): Sedimentation of Generalized Systems of Interacting Particles. II. Active Enzyme Centrifugation-Theory and Extensions of its Validity Range. Biopolymers 14: 1701–1716.

    Article  PubMed  CAS  Google Scholar 

  • Cox DJ (1978): Calculation of Simulated Sedimentation Velocity Profiles for Self-Association Solutes. Methods Enzymol. 48: 212–242.

    Article  CAS  Google Scholar 

  • Dishon M, Weiss GH and Yphantis DA (1966): Numerical Solutions of the Lamm Equation. I. Numerical Procedure. Biopolymers 4: 449–455.

    Article  CAS  Google Scholar 

  • Gilbert GA (1955): Disc. Faraday Soc. 20: 68–71.

    Google Scholar 

  • Gilbert GA (1959): Sedimentation and electrophoresis of interacting substances I. Idealized boundary shape for a single substance aggregating reversibly. Proc. Roy. Soc. London A250: 377–388.

    Article  CAS  Google Scholar 

  • Gilbert GA and Jenkins RC LI (1956): Boundary Problems in the Sedimentation and Electrophoresis of Complex Systems in Rapid Reversible Equilibrium. Nature 111: 853–854.

    Article  Google Scholar 

  • Gilbert GA and Jenkins RC LI (1959): Sedimentation and electrophoresis of interacting substances II. Asymptotic boundary shape for two substances interacting reversibly. Proc. Roy. Soc. London A253: 420–437.

    Article  CAS  Google Scholar 

  • Gilbert LM and Gilbert GA (1965): Generalized treatment of Reversibly Reacting Systems in Transport Experiments, Illustrated by an Antigen- Antibody Reaction. Biochem. J. 97: 7c–9c.

    CAS  Google Scholar 

  • Gilbert LM and Gilbert GA (1973): Sedimentation Velocity Measurement of Protein Association. Methods Enzymol. 27: 273–296.

    Article  PubMed  CAS  Google Scholar 

  • Goad WB (1970): Numerical Methods. In Cann JR (1970): Interacting Macromolecules. The Theory and Practice of Their Electrophoresis, Ultracentrifugation, and Chromatography. Chapter 5, New York: Academic Press.

    Google Scholar 

  • Goldberg RJ (1952): A Theory of Antibody-Antigen Reactions. I. Theory for Reactions of Multivalent Antigen with Bivalent and Univalent Antibody. J. Am. Chem. Soc. 74: 5715–5725.

    Article  CAS  Google Scholar 

  • Heidelberger M and Pedersen KO (1937): The Molecular Weight of Antibodies. J. Exper. Med. 65: 393–414.

    Article  CAS  Google Scholar 

  • Kegeles G and Cann JR (1978): Kinetically Controlled Mass Transport of Associating-Dissociating Macromolecules. Methods Enzymol. 48: 248–270.

    Article  PubMed  CAS  Google Scholar 

  • Kegeles G and Tai M-S (1973): Rate Constants for the Hexamer-Dodecamer Reaction of Lobster Hemocyanin. Biophys. Chem. 1: 46–50.

    Article  CAS  Google Scholar 

  • Kegeles G and Johnson M (1970): Effects of Pressure on Sedimentation Velocity Patterns. Arch. Biochem. Biophys. 141: 59–62.

    Article  PubMed  CAS  Google Scholar 

  • Kegeles G, Rhodes L and Bethune JL (1967): Sedimentation Behavior of Chemically Reacting Systems. Proc. Natl. Acad. Sci. USA 58: 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Kirshner AG and Tanford C (1964): The Dissociation of Hemoglobin by Inorganic Salts. Biochemistry 3: 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Lee JC, Harrison D and Timasheff SN (1975): Interaction of Vinblastine with Calf Brain Microtubule Protein. J. Biol. Chem. 250: 9276–9282.

    PubMed  CAS  Google Scholar 

  • McNeil BJ, Nichol LW and Bethune JL (1970): Directed Transport of Monomer- Dimer-Trimer Systems. Comparison of Asymptotic and Countercurrent Distribution Approaches. J. Phys. Chem. 74: 3846–3852.

    Article  CAS  Google Scholar 

  • Meselson M and Stahl FW (1958): The Replication of DNA in Escherichia Coli. Proc. Nat. Acad. Sci. USA 44: 671–682.

    Article  PubMed  CAS  Google Scholar 

  • Miller K and Van Holde KE (1974): Oxygen Binding by Callianassa californiensis Hemocyanin. Biochemistry 13: 1668–1674.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto K and Kegeles G (1971): Subunit Interactions of Lobster Hemocyanin 1. Ultracentrifuge Studies. Arch. Biochem. Biophys. 142: 247–257.

    Article  PubMed  CAS  Google Scholar 

  • Na GC and Timasheff SN (1980): Thermodynamic Linkage between Tubulin Self-Association and the Binding of Vinblastine. Biochemistry 19: 1355–1365.

    Article  PubMed  CAS  Google Scholar 

  • Na GC and Timasheff SN (1986): Interaction of Vinblastine with Calf Brain Tubulin: Multiple Equilibria. Biochemistry 25: 6214–6222.

    Article  PubMed  CAS  Google Scholar 

  • Oberhauser DF, Bethune JL and Kegeles G (!965): Countercurrent Distribution of Chemical Reacting Systems. IV. Kinetically Controlled Dimerization in a Boundary. Biochemistry 4: 1878–1884.

    Google Scholar 

  • Roberts WK and Olsen ML (1976): Studies on the Formation and Stability of Aminoacyl-tRNA Synthetase Complexes from Ehrlich Ascites Cells. Biochim. Biophys. Acta. 454: 480–492.

    PubMed  CAS  Google Scholar 

  • Roxby R, Miller K, Blair DP and Van Holde KE (1974): Subunits and Association Equilibria of Callianassa californiensis Hemocyanin. Biochemistry 13: 1662–1668.

    Article  PubMed  CAS  Google Scholar 

  • Shelton E, Kuff EL, Maxwell ES and Harrington JT (1970): Cytoplasmic Particles and Aminoacyl Transferase I Activity. J. Cell. Biol 45: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Singer SJ (1965): Structure and Function of Antigen and Antibody Proteins. In: The Proteins. Composition, Structure, and Function, Neurath H, ed. Second Edition, Vol. HI Chapter 15 New York: Academic Press.

    Google Scholar 

  • Svedberg T and Pedersen KO (1940): The Ultracentrifuge, London: Oxford University Press.

    Google Scholar 

  • Tai M-S and Kegeles G (1975): Mechanism of the Hexamer-Dodecamer Reaction of Lobster Hemocyanin. Biophys. Chem. 3: 307–315.

    Article  PubMed  CAS  Google Scholar 

  • Timasheff SN, Frigon RP and Lee JC (1976): A solution physical-chemical examination of the self-association of Tubulin. Fed. Proc. t Fed. Am. Soc. Exp. Biol. 35: 1886–1891.

    CAS  Google Scholar 

  • Todd GP and Haschemeyer RH (1983): Generalized Finite Element Solution to One-Dimensional Flux Problems. Biophys. Chem. 17: 321–336.

    Article  PubMed  CAS  Google Scholar 

  • Werner WE and Schachman HK (1989): Analysis of the Ligand-promoted Global Conformational Change in Aspartate Transcarbamoylase. J. Mol. Biol. 206: 221–230.

    Article  PubMed  CAS  Google Scholar 

  • Werner WE, Cann JR and Schachman HK (1989): Boundary Spreading in Sedimentation Velocity Experiments on Partially Liganded Aspartate Transcarbamoylase, A Ligand-mediated Isomerization. J. Mol. Biol. 206: 231–237.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Boston

About this chapter

Cite this chapter

Cann, J.R. (1994). Computer Simulation of the Sedimentation of Ligand-Mediated and Kinetically Controlled Macromolecular Interactions. In: Schuster, T.M., Laue, T.M. (eds) Modern Analytical Ultracentrifugation. Emerging Biochemical and Biophysical Techniques. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6828-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6828-1_10

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6830-4

  • Online ISBN: 978-1-4684-6828-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics