Skip to main content

Impulsive Evolution Equations and Population Models

  • Chapter
Dynamics of Complex Interconnected Biological Systems

Part of the book series: Mathematical Modelling ((MMO,volume 6))

Abstract

Biological systems can be subjected to short-term fluctuations in the environment or in the character of the system. This paper models such dynamics by evolution equations with impulses. An appropriate setting is a space of Banach space valued functions of bounded variation. Some general properties, such as existence and uniqueness, are considered, along with some dynamical system concepts of impulsive evolution equations. The study is motivated by, and refers to an example of a continuously age-distributed population subjected to impulses from time to time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Artstein, 1977. Topological dynamics of ordinary differential and Kurzweil euations, J. Differential Equations 23, pp. 224–243.

    Article  MathSciNet  MATH  Google Scholar 

  2. Z. Artstein, 1977. The limiting equations of nonautonomous ordinary differential equations, J. Differential Equations 25, pp. 184–20.

    Article  MathSciNet  MATH  Google Scholar 

  3. J.M. Ball, 1977. Strongly continuous semigroups, weak solutions and the variation of constants formula, Proc. Amer. Math. Soc. 63, pp. 370–373.

    MathSciNet  MATH  Google Scholar 

  4. T.S. Chew, 1988. On Kurzweil generalized ordinary differential equations, J. Diff. Eqs. 76, pp. 286–293.

    Article  MathSciNet  MATH  Google Scholar 

  5. L.M. Graves, 1946. The Theory of Functions of Real Variables, McGraw-Hill, New York.

    MATH  Google Scholar 

  6. M.E. Gurtin and R.C. MacCamy, 1974. Nonlinear age-dependent population dynamics, Arch. Rat. Mech. Anal. 54, pp. 281–300.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Kurzweil, 1958. Generalized ordinary differential equations, Czechoslovak Math. J. 8, pp. 360–389.

    MathSciNet  Google Scholar 

  8. G. Oster and J. Guckenheimer, 1975. Bifurcation Phenomena in population models, in J.E. Marsden and M. McCracken (Eds.), The Hopf Bifurcation and its Applications, Springer-Verlag, New York

    Google Scholar 

  9. G. Oster and Y. Takahashi, 1974. Models for age-specific interactions in a periodic environment, Ecol. Monogr. 44, pp. 483–501.

    Article  Google Scholar 

  10. S.G. Pandit and S.G. Deo, 1982. Differential Systems Involving Impulses, Lecture Notes in Mathematics No. 954, Springer-Verlag, Berlin.

    Google Scholar 

  11. A. Pazy, 1983. Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  12. J. Pruss, 1983. On the qualitative behaviour of populations with age-specific interactions, Comp, and Maths, with Appls. 9, pp. 327–339.

    MathSciNet  Google Scholar 

  13. G.F. Webb, 1985. Theory of nonlinear age-dependent population dynamics, Marcel Dekker, New York.

    MATH  Google Scholar 

  14. N.U. Ahmed, 1983. Properties of relaxed trajectories for a class of nonlinear evolution equations on a Banach space, SIAM J. Optim. Control 21, pp. 953–967.

    Article  MATH  Google Scholar 

  15. S. Bochner and A.E. Taylor, 1983. Linear functional on certain spaces of abstractly-valued functions, Ann. Math. 39, pp. 913–944.

    Article  MathSciNet  Google Scholar 

  16. L. Cesari, 1988. Discontinuous optimal solutions and applications, in K.L. Teo et al (Eds), International Conference on Optimization Techniques and Applications, Singapore, 8–10 April, 1987, University of Singapore pp. 107–121.

    Google Scholar 

  17. J.A. Clarkson, 1936. Uniformly convex spaces, Trans. Amer. Math. Soc. 40, pp. 396–414.

    Article  MathSciNet  Google Scholar 

  18. K. Kuratowski. 1966. Topology. Academic Press, New York.

    Google Scholar 

  19. J. Kurzweil, 1957. Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J. 7, pp. 418–446.

    MathSciNet  Google Scholar 

  20. J.P. LaSalle, 1976. Stability theory and invariance principles, in L. Cesari, J.K. Hale and J.P. LaSalle (Eds), Dynamical Systems, Vol. 1, Academic Press, New York pp. 211–222.

    Google Scholar 

  21. R.M. McLeod, 1980. The Generalized Riemann Integral, The Mathematical Association of America, Carus Mathematical Monographs.

    Google Scholar 

  22. E.J. McShane. 1983. Unified Integration. Academic Press, New York.

    MATH  Google Scholar 

  23. S.D. Milusheva and D.D. Bainov, 1982. Justification of the averaging method for a class of functional differential equations with impulses, J. Lond. Math. Soc. 25, pp. 309–331.

    Article  MathSciNet  Google Scholar 

  24. N.H. Pavel, 1987. Nonlinear Evolution Operators and Semigroups, Lecture Notes in Mathematics 1260. Springer-Verlag, Berlin.

    Google Scholar 

  25. S. Schwabik, 1985. Generalized Differential Equations, Rozpravy Ceskoslovenske Akademie Ved, Prague.

    Google Scholar 

  26. S.H. Saperstone, 1981. Semidynamical Systems in Infinite Dimensional Spaces, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Birkhäuser Boston

About this chapter

Cite this chapter

Diamond, P. (1990). Impulsive Evolution Equations and Population Models. In: Vincent, T.L., Mees, A.I., Jennings, L.S. (eds) Dynamics of Complex Interconnected Biological Systems. Mathematical Modelling, vol 6. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6784-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6784-0_10

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6786-4

  • Online ISBN: 978-1-4684-6784-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics