Skip to main content

Artificial Insemination by Donor: Discrete time survival data with crossed and nested random effects

  • Conference paper
Proceedings of the First Seattle Symposium in Biostatistics

Part of the book series: Lecture Notes in Statistics ((LNS,volume 123))

Abstract

A discrete time survival problem arising in studies of artificial insemination by donor is described. This problem involves two levels of “ frailty” effect to model heterogeneity of female fecundability, together with a further two nested sets of random effects for sperm donor and donation. Parametric and non-parametric approaches to modelling such data are discussed, and computational difficulties highlighted. Attention is also drawn to the relationship of such problems to the extensive literature on generalised linear mixed models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Aitkin and B.J. Francis. GLIM4 macros for nonparametric maximum likelihood estimation with overdispersion and variance component models in the exponential family. The GLIM Newsletter (submitted), 1995.

    Google Scholar 

  2. N.E. Breslow and D. Clayton. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88:9–25, 1993.

    Article  MATH  Google Scholar 

  3. A.S. Bryke and S.W. Raudenbush. Hierarchical Linear Models: Applications and Data Analysis Methods. Sage publications, Newbury Park, 1992.

    Google Scholar 

  4. D. Clayton. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65:141–151, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Clayton. Generalized linear mixed models. In W.R. Gilks, S. Richardson, and D. Spiegelhalter, editors, Markov Chain Monte Carlo in Practice. Chapman and Hall, London, 1994.

    Google Scholar 

  6. M.R. Conoway. A random effects model for binary data. Biometrics, 46:317–328, 1990.

    Article  MathSciNet  Google Scholar 

  7. D.R. Cox. Regression models and life tables (with discussion). Journal of the Royal Statistical Society, Series B, 34:187–220, 1972.

    MATH  Google Scholar 

  8. R.J. Carroll and D. Ruppert. Robust estimation in heteroscedastic linear models. Annals of Statistics, 10:429–441, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Goldstein. Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika, 73:43–56, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Hougaard. Life table methods for heterogeneous populations: distributions describing the heterogeneity. Biometrika, 71:75–83, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  11. P.J. Huber. The behaviour of maximum likelihood estimates under non-standard conditions. In Proceedings of the Fifth Berkely Symposium on Mathematical Statistics and Probability, I, pages 221–223. 1967.

    Google Scholar 

  12. J.J. Heckmann and J.R. Walker. Estimating fecundability from data on waiting times to first conception. Journal of the American Statistical Association, 85:283–295, 1990.

    Article  Google Scholar 

  13. J.P. Hinde and A.T.A. Wood. Binomial variance component models with a non-parametric assumption concerning random effects. In R. Crouchley, editor, Longitudinal data analysis. Avebury, Aldershot, Hants, 1990.

    Google Scholar 

  14. J.O. Irwin. A note on the subdivision of X 2 into componenents. Biometrika,36:130, 1949.

    MathSciNet  MATH  Google Scholar 

  15. H.O. Lancaster. The derivation and partition of X 2 in certain discrete distributions. Biometrika,36:117, 1949.

    MathSciNet  MATH  Google Scholar 

  16. Y. Lee and J.A. Neider. Hierarchical generalized linear models. Journal of the Royal Statistical Society, Series B, 58:1, 1964.

    Google Scholar 

  17. J.A. Little and D.B. Rubin. Statistical Analysis with Missing Data. Wiley Series in Probability and Mathematical Statistics. Wiley, New York, 1987.

    MATH  Google Scholar 

  18. K.Y. Liang and S.L. Zeger. Longitudinal data analysis using generalized linear models. Biometrika, 73:13–22, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  19. C.A. McGilchrist and C.W. Aisbett. Regression with frailty in survival analysis. Biometrics, 47:461–466, 1991.

    Article  Google Scholar 

  20. C.A. McGilchrist. REML estimation for survival models with frailty. Biometrics, 49:221–225, 1993.

    Article  Google Scholar 

  21. D. Oakes. A model for association in bivariate survival data. Journal of the Royal Statistical Society, Series B, 44:414–422, 1982.

    MathSciNet  MATH  Google Scholar 

  22. D. Oakes. Semi-parametric inference in a model for association in bivariate survival time data. Biometrika, 73:353–361, 1986.

    MathSciNet  MATH  Google Scholar 

  23. M.C. Sheps. On the time required for conception. Population Studies, 17:85–97, 1964.

    Google Scholar 

  24. M.C. Sheps and J. A. Menken. Mathematical models of conception and birth. University of Chicago Press, Chicago, 1973.

    Google Scholar 

  25. C.R. Weinberg, D.D. Baird, and A.J. Wilcox. Sources of bias in studies of time to pregnancy. Statistics in Medicine, 13:671–681, 1994.

    Article  Google Scholar 

  26. C.R. Weinberg and B.C. Gladen. The beta-geometric distribution applied to comparatitive fecundability studies. Biometrics, 42:547–560, 1986.

    Article  Google Scholar 

  27. H. White. A heteroskedasticity-consistent covariance matrix estimate and a direct test for heteroskedasticity. Econometrika, 48:817–830, 1980.

    Article  MATH  Google Scholar 

  28. A.I. Yashin and I.A. Iachine. Genetic analysis of durations: correlated frailty model applied to survival of Danish twins. Genetic Epidemiology, 12:529–538, 1995.

    Article  Google Scholar 

  29. S.L. Zeger and M.R. Karim. Generalized linear models with random effects; a gibbs sampling approach. Journal of the American Statistical Association, 86:79–86, 1991.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Clayton, D., Ecochard, R. (1997). Artificial Insemination by Donor: Discrete time survival data with crossed and nested random effects. In: Lin, D.Y., Fleming, T.R. (eds) Proceedings of the First Seattle Symposium in Biostatistics. Lecture Notes in Statistics, vol 123. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-6316-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6316-3_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94992-5

  • Online ISBN: 978-1-4684-6316-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics