Skip to main content

Double-Label Quantitative Autoradiographic Studies of Anaerobic Glucose Metabolism in Limbic Seizures

  • Chapter
Kindling 4

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 37))

  • 71 Accesses

Abstract

Sokoloff’s (1) radiolabeled 2-deoxyglucose (2DG) method for calculating the local cerebral metabolic rate for glucose (LCMR) has been employed to determine those structures most involved in a variety of experimental and clinical paradigms. It has proven particularly valuable in identifying the structures most involved in a number of human and animal seizure states (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Sokoloff, M. Reivich, C. Kennedy, M. H. Des Rosiers, i(4 S. Patlak, K. D. Pettigrew, O. Sakurada, and M. Shinohara, The [C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat, J. Neurochem. 28: 897 (1977).

    Article  PubMed  CAS  Google Scholar 

  2. R. F. Ackermann, J. Engel Jr., and M. E. Phelps, Identification of seizure-mediating brain structures with the deoxyglucose method: Studies of human epilepsy with positron emission tomography, and animal seizure models with contact autoradiography, in: “Advances in Neurology, vol. 44, ” A. V. Delgado-Escueta, A A. Ward Jr., D. M. Woodbury, and R. J. Porter, eds., Raven Press, New York (1986).

    Google Scholar 

  3. M. C. Evans and B. S. Meldrum, Regional brain glucose metabolism in chemically-induced seizures in the rat, Brain Res. 297: 235 (1984).

    Article  PubMed  CAS  Google Scholar 

  4. F. Plum and T. E. Duffy, The couple between cerebral metabolism and blood flow during seizures, in: “Brain Work, Alfred Benzon Symposium VIII,” D. H. Ingvar and N.A. Lassen, eds., Munksgaard, Copenhagen (1975).

    Google Scholar 

  5. M. Erecinska and I. A. Silver, ATP and brain function, J. Cereb. Blood Flow Metab. 9: 2 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. S. Rehncrona, H. N. Hauge, and B. K. Siesjö, Enhancement of iron-catalyzed free radical formation by acidosis in brain homogenates: Difference in effect by lactic acid and CO2 J. Cereb. Blood Flow Metab. 9: 65 (1989).

    Article  PubMed  CAS  Google Scholar 

  7. R. C. Collins, D. W. McCandless14and I. L. Wagman, Cereal glucose utilization: Comparison of [C]deoxyglucose and [6- C]glucose quantitative autoradiography, J. Neurochem. 49: 1564 0987 ).

    Google Scholar 

  8. P. T. Fox, M. E. Raichle, M A. Mintun, and C. Dence, Nonoxidative glucose consumption during focal physiologic neural activity, Science 241: 462 (1988).

    Article  PubMed  CAS  Google Scholar 

  9. J. L. Lear and R. F. Ackermann, Comparison of cerebral glucose metabolic rates measured with fluorodeoxyglucose labeled in the 1, 2, 3–4, and 6 positions using double label quantitative digital autoradiography, J. Cereb. Blood Flow Metab. 8: 575 (1988).

    Article  PubMed  CAS  Google Scholar 

  10. C. J. Van den Berg. and R. Bruntink, Glucose oxidation in the brain during seizures: Experiments with labeled glucose and deoxygludose, in: “Glutamine, Glutamate, and GABA in the Central Nervous System,” L. Hertz, E. Kvamme, E. G. McGeer, and A. Schousboe, eds., Alan R. Liss, New York (1983).

    Google Scholar 

  11. R. F. Ackermann and J. L. Lear, Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose, J. Cereb. Blood Flow Metab. 9: 774 (1989).

    Article  PubMed  CAS  Google Scholar 

  12. J. E. Cremer, V. J. Cunningham, W. M. Pardridge, L. D. Braun, and W. H. Oldendorf, Kinetics of blood-brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats, J. Neurochem. 33: 439 (1979).

    Article  PubMed  CAS  Google Scholar 

  13. W. H. Oldendorf, L. Braun, and E. Cornford, pH dependence of blood-brain barrier permeability to lactate and nicotine, Stroke 10: 577 (1979).

    Article  PubMed  CAS  Google Scholar 

  14. R. A. Hawkins, A. M. Mans, D. W. Davis, J. R. Vitlt, and L. S. Hibbard, Cerebral glucose use measured with [C]glucose labeled in the 1,2, or 6 position, Am. J. Physiol. 248 (Cell Physiol. 17): C170 (1985).

    PubMed  CAS  Google Scholar 

  15. R. J. Racine, Modification of seizure activity by electrical stimulation: II. Motor seizure, Electroenceph. clin. neurophysiol. 32: 281 (1973).

    Article  Google Scholar 

  16. E. Pinard, A. S. Rigaud, D. Riche, R. Naquet, and J. Seylaz, Continuous determination of the cerebrovascular changes induced by bicuculline and kainic acid in unanaesthetized spontaneously breathing rats, Neuroscience 23: 943 (1987).

    Article  PubMed  CAS  Google Scholar 

  17. M. Ueki, F. Linn, and K.-A. Hossmann, Functional activation of cerebral blood flow and metabolism before and after global ischemia of rat brain, J. Cereb. Blood Flow Metab. 8: 486 (1988).

    Article  PubMed  CAS  Google Scholar 

  18. R. J. Paul, Functional compartmentalization of oxidative and glycolytic metabolism in vascular smooth muscle, Am. J. Physiol. 244 (Cell Physiol. 13): C399 (1983).

    PubMed  CAS  Google Scholar 

  19. E. Racker, Why do tumor cells have a high aerobic glycolysis?, J. Cell. Physiol. 89: 697 (1976).

    Article  PubMed  CAS  Google Scholar 

  20. M. Mata, D. J. Fink, H. Gainer, C. B. Smith, L. Davidsen, H. Savaki, W. J. Schwartz, and L. Sokoloff, Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity, J. Neurochem. 34: 213 (1980).

    Article  PubMed  CAS  Google Scholar 

  21. N. Brookes and P. J. Yarowsky, Determinants of deoxyglucose uptake in cultured astrocytes: The role of the sodium pump, J. Neurochem. 44: 473 (1985).

    Article  PubMed  CAS  Google Scholar 

  22. R. K. Orkand, J. G. Nicholls, and S. W. Kuffler, Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia, J. Neurophysiol. 29: 788 (1966).

    PubMed  CAS  Google Scholar 

  23. R. D. Keynes and J. M. Ritchie, The movements of labelled ions in mammalian non-myelinated nerve fibres, J. Physiol. 179: 333 (1965).

    PubMed  CAS  Google Scholar 

  24. H. Mcllwain, Phosphates of brain during in vivo metabolism: Effects of oxygen, glucose, glutamate, glutamine, and calcium and potassium salts, Biochem. J. 52: 289 (1952).

    Google Scholar 

  25. R. Casteels and F. Wuytack, Aerobic and anaerobic metabolism in smooth muscle cells of taenia coli in relation to active ion transport, J. Physiol. 250: 203 (1975).

    PubMed  CAS  Google Scholar 

  26. M. Shinohara, B. Dollinger, G. Brown, S. Rapoport, and L. Sokoloff, Cerebral glucose utilization: Local changes during and after recovery from spreading cortical depression, Science 203: 188 (1979).

    Article  PubMed  CAS  Google Scholar 

  27. W. G. Kuhr and J. Korf, Extracellular lactic acid as an indicator of brain metabolism, J. Cereb. Blood Flow Metab. 8: 130 (1988).

    Article  PubMed  CAS  Google Scholar 

  28. L. J. King, O. H. Lowry, J. V. Passonneau, and V. Venson, Effects of convulsants on energy reserves in the cerebral cortex, J. Neurochem. 14: 599 (1967).

    Article  PubMed  CAS  Google Scholar 

  29. W. P. Pulsinelli and R. P. Kraig, Photic stimulation causes enhanced glycolysis in the superior colliculus, Soc. Neurosci Abstr. 14: 48 (1988).

    Google Scholar 

  30. D. Richter and R. M. C. Dawson, Brain metabolism in emotional excitement and in sleep, Am. J. Physiol. 154: 73 (1948).

    PubMed  CAS  Google Scholar 

  31. M. Nedergaard, S A. Goldman, and W. A. Pulsinelli, Lactic-acidinduced intracellular acidification in primary cultures of mammalian brain, J. Cereb. Blood Flow Metab. 9 (Suppl. 1): S384 (1989).

    Google Scholar 

  32. J. H. Swan, M. C. Evans, and B. S. Meldrum, Long-term development of selective neuronal loss and the mechanism of protection by 2amino-7-phosphonoheptanoate in a rat model of incomplete forebrain ischaemia, J. Cereb. Blood Flow Metab. 8: 64 (1988).

    Article  PubMed  CAS  Google Scholar 

  33. E. Ozyurt, D. I. Graham, G. N. Woodruff, and J. McCulloch, Protective effect of the glutamate antagonist, MK-801 in focal cerebral ischemia in the cat, J. Cereb. Blood Flow Metab. 8: 138 (1988).

    Article  PubMed  CAS  Google Scholar 

  34. W. G. Kuhr and J. Korf, N-methyl-D-aspartate receptor involvement in lactate production following ischemia or convulsions in rats, Eur. J. Pharmacol. 155: 145 (1988).

    Article  PubMed  CAS  Google Scholar 

  35. N. Mori and J. A. Wada, Bidirectional transfer between kindling induced by excitatory amino acids and electrical stimulation, Brain Res. 425: 45 (1987).

    Article  PubMed  CAS  Google Scholar 

  36. D. P. Cain, K. A. Desborouch, and D. J. McKitrick, Retardation of amygdala kindling by antagonism of NMD-Aspartate and muscarinic cholinergic receptors: Evidence for the summation of excitatory mechanisms in kindling, Exp. Neurol. 100: 179 (1988).

    Article  PubMed  CAS  Google Scholar 

  37. T. Sutula, H. Xiao-Xian, J. Cavazos, and G. Scott, Synaptic reorganization in the hippocampus induced by abnormal functional activity, Science 239: 1147 (1988).

    Article  PubMed  CAS  Google Scholar 

  38. A. Represa, G. Le Gal La Salle, and Y. Ben-Ari, Hippocampal plasticity in the kindling model of epilepsy in rats, Neurosci. Lett. 99: 345 (1989).

    Article  PubMed  CAS  Google Scholar 

  39. T. L. Babb, W. R. Kupfer, and J. K. Pretorius, Synaptic reorganization of mossy fibers into inner molecular layer in human epileptic fascia dentata, Neurosci. Abstr. 14: 881 (1988).

    Google Scholar 

  40. S. Feldblum and R. F. Ackermann, Increased susceptibility to hippocampal and amygdala kindling following intrahippocampal kainic acid, Exp. Neurol. 97: 255 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Ackermann, R.F., Lear, J.L. (1990). Double-Label Quantitative Autoradiographic Studies of Anaerobic Glucose Metabolism in Limbic Seizures. In: Wada, J.A. (eds) Kindling 4. Advances in Behavioral Biology, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5796-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5796-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5798-8

  • Online ISBN: 978-1-4684-5796-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics