Skip to main content

Mechanisms of Kindling in Developing Animals

  • Chapter
Kindling 4

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 37))

Abstract

Kindling was first demonstrated by Goddard and his colleagues in the late 1960s (1,2) and has since become an important animal model of partial epilepsy with secondary generalization. Kindling is most commonly achieved with the administration of repeated local subconvulsive electrical stimulations which eventually lead to the development of generalized seizures. Chemical kindling can also be demonstrated with a variety of convulsant drugs (pentylenetetrazol, lidocaine, cocaine, penicillin and carbachol) administered at subconvulsive doses (3–10). Irrespective of the type of stimulus used for the kindling process, kindling progresses in a predictable manner. The initial stimulus results in a brief focal electrical seizure or afterdischarge (AD) in the absence of any behavioral manifestations. Gradually, as the behavioral manifestations become more apparent, the ADs intensify and increase in duration. Once established, the kindling effect persists for several months suggesting that it produces permanent changes in the brain (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. V. Goddard, Development of epileptic seizures through brain stimulation at low intensity. Nature 204: 1020–1021 (1967).

    Article  Google Scholar 

  2. G. V. Goddard, D. C. McIntyre, and C. K. Leech, A permanent change in brain function resulting from daily electrical stimulation. Exp.Neurol. 25: 295–330 (1969).

    Article  PubMed  CAS  Google Scholar 

  3. H. Vosu, and R. A. Wise, Cholinergic seizure kindling in the rat: comparison of caudate, amygdala and hippocampus, Behav Biol. 13: 491–495 (1975).

    Article  PubMed  CAS  Google Scholar 

  4. R. M. Post, R. T. Kopanda, and A. Lee, Progressive behavioral changes during chronic lidocaine administration: relationship to kindling, Life Sci. 17: 943–950 (1975).

    Article  PubMed  CAS  Google Scholar 

  5. R. M. Post, Progressive changes in behavior and seizures following chronic cocaine administration relationship to kindling and psychosis, Advan. Behay. Biol. 21: 353–372 (1977).

    CAS  Google Scholar 

  6. J. S. Stripling, and E. H. Ellinwood, Jr., Augmentation of the behavioural and electrophysiologic responses to cocaine by chronic administration in the rat, Exp. Neurol. 54: 546–564 (1977).

    Article  PubMed  CAS  Google Scholar 

  7. R. C. Collins, Kindling of neuroanatomic pathways during recurrent focal penicillin seizures, Brain Res. 150: 503–517 (1978).

    Article  PubMed  CAS  Google Scholar 

  8. J. P. Fabisiak, and W. S. Schwark, Aspects of the pentylenetetrazol kindling model of epileptogenesis in the rat, Exp. Neurol. 78: 7–14 (1982).

    Article  PubMed  CAS  Google Scholar 

  9. D. P. Cain, Bidirectional transfer of electrical and carbachol kindling, Brain Res. 260: 135–138 (1983).

    Article  PubMed  CAS  Google Scholar 

  10. C. G. Wasterlain, and V. Jonec, Chemical kindling by muscarinic amygdaloid stimulation in the rat, Brain Res. 271: 311–323 (1983).

    Article  PubMed  CAS  Google Scholar 

  11. S. L. Moshé, The effects of age on the kindling phenomenon, Dev. Psychohiol. 14: 75–81 (1981).

    Article  Google Scholar 

  12. S. L. Moshé, N. S. Sharpless, and J. Kaplan, Kindling in developing rats: afterdischarge thresholds, Brain Res. 211: 190–195 (1981).

    Article  PubMed  Google Scholar 

  13. M. E. Gilbert, and D. P. Cain A developmental study of kindling in the rat, Dev. Brain Res 2: 321–328 (1982).

    Article  Google Scholar 

  14. G. L. Holmes, and D. A. Weber, Effects of ACTH on seizure susceptibility in the developing brain, Ann. Neuro1. 20: 82–88 (1986).

    Article  CAS  Google Scholar 

  15. S. Lee, H. Kawawaki, O. Matsuoka, and R. Murata, Effect of Ca-antagonist (flunarizine) on kindling seizures in suckling rats, Na To Hattatsu, 18: 292–298 (1986).

    CAS  Google Scholar 

  16. S. L. Moshé, B. J. Albala, R. F. Ackermann, and J. Engel Jr., Increased seizure susceptibility of the immature brain, Dev. Brain Res. 7: 81–85 (1983).

    Article  Google Scholar 

  17. S. Lee, R. Murata, and S. Matsuura, Developmental study of hippocampal kindling, Epilepsia 30: 266–270 (1987).

    Article  Google Scholar 

  18. R. J. Racine, M. W. Burnham, J. G. Gartner, and D. Levitan, Rates of motor seizure development in rats subjected to electrical brain stimulation: strain and interstimulation interval effects, Electroencephal. Clin Neuroph sviol 35: 553–556 (1973).

    CAS  Google Scholar 

  19. S. L. Peterson, T. E. Albertson, and L. G. Stark, Intertrial intervals and kindled seizures, Exp. Neurol. 71: 144–153 (1981).

    Article  PubMed  CAS  Google Scholar 

  20. S. L. Moshé, and B. J. Albala, Maturational changes in postictal refractoriness and seizure susceptibility in developing rats, Ann. Neurol. 13: 552–557 (1983).

    Article  PubMed  Google Scholar 

  21. J. P. Pinel, and L. I. Rovner, Experimental epileptogenesis: kindling induced epilepsy in rats, Exp. Neurol. 58: 190–202 (1978).

    Article  PubMed  CAS  Google Scholar 

  22. S. L. Moshé, and N. Ludvig, Kindling, in: “Recent Advances of Epilepsy 4” T. A. Pedley and B. S. Meldrum, eds., Churchill Livingstone, N. Y. (1988).

    Google Scholar 

  23. M. S. Duchowny, and J. F. Burchfiel, Facilitation and antagonism of kindled seizures development in the limbic system of the rat, Electroencephal. Clin. Neurophysiol. 51: 403–416 (1981).

    Article  CAS  Google Scholar 

  24. J. L. Burchfiel, K. A. Serpa, and F. H. Duffy, Further studies of antagonism of seizure development between concurrently developing kindled limbic foci in the rat, Exp.Neurol. 75: 476–489 (1982).

    Article  PubMed  CAS  Google Scholar 

  25. A. Vernadakis, and D. M. Woodbury, The developing animal as a model, Epilepsia 10: 163–178 (1969).

    Article  PubMed  CAS  Google Scholar 

  26. A. Zouhar, P. Mares, and G. Brozek, Electrocorticographic activity elicited by metrazol during ontogenesis in rats, Arch. Int. Pharmacodyn. 248: 280–288 (1980).

    PubMed  CAS  Google Scholar 

  27. B. J. Albala, S. L. Moshé, and R. Okada, Kainic acid induced seizures: a developmental study, Dev Brain Res. 13: 139–148 (1984).

    Article  CAS  Google Scholar 

  28. E. A. Cavalheiro, D. F. Silva, W. A. Turski, L. S. CalderazzoFilho, Z. A. Bartolotto, and L. Turski, The susceptibility of rats to pilocarpine-induced seizures is age dependent, Dev. Brain Res. 37: 43–58 (1987).

    Article  CAS  Google Scholar 

  29. E. F. Sperber, and S. L. Moshé, Age-related differences in seizure susceptibility to flurothyl, Dev Brain Res 39: 295–297 (1988).

    Article  CAS  Google Scholar 

  30. M. J. Iadarola, and K. Gale, Substantia nigra: site of anticonvulsant activity mediated by gamma-aminobutyric acid, Science 218: 1237–1240 (1982).

    Article  PubMed  CAS  Google Scholar 

  31. G. Le Gal La Salle, M. Kajima, and S. Feldblum, Abortive amygdaloid kindling seizures following microinjections of gamma-vinyl-GABA in the vicinity of substantia nigra in rats, Neurosci Lett. 36: 69–74 (1983).

    Article  PubMed  Google Scholar 

  32. L. P. Gonzalez, and M. K. Hettinger, Intranigral muscimol suppresses ethanol withdrawal seizures, Brain Res. 298: 163–166 (1984).

    Article  PubMed  CAS  Google Scholar 

  33. J. O. McNamara, M. T. Galloway, L. L. Rigsbee, and C. Shin. Evidence implicating substantia nigra in regulation of kindled seizure threshold, J. Neurosci. 4: 2410–2417 (1984).

    PubMed  CAS  Google Scholar 

  34. R. Okada, S. L. Moshé, B. Y. Wong, E. F. Sperber, and D. Zhao, Age related substantia nigra mediated seizure facilitation, Exp Neurol. 93: 180–187 (1986).

    Article  PubMed  CAS  Google Scholar 

  35. L. Turski, E. A. Cavalheiro, M. Schwarz, W. A. Turski, L. E. A. M. Mello, Z. A. Bartolotto, T. Klockgether, and K. H. Sontag, Susceptibility to seizures produced by pilocarpine in rats after microinjection of isoniazid or gamma-vinyl GABA into the SN, Brain Res. 370: 294–309 (1986).

    Article  PubMed  CAS  Google Scholar 

  36. E. F. Sperber, J. N. D. Wurpel, D. Y. Zhao, and S. L. Moshé, Evidence for the involvement of nigral GABAA receptors in seizures of adult rats, Brain Res.. 480: 378–382 (1989).

    CAS  Google Scholar 

  37. J. T. Coyle, and S. J. Enna, Neurochemical aspects of the ontogenesis of gabanergic neurons in the rat brain. Drain Res. 111: 119–133 (1976).

    CAS  Google Scholar 

  38. J. M. Palacios, D. L. Niehoff, and M. J. Kuhar, Ontogeny of GABA and benzodiazepine receptors: effect of Triton X-100, bromide and muscimol, Brain Res. 179: 390–395 (1979).

    Article  PubMed  CAS  Google Scholar 

  39. J. N. D. Wurpel, A. Tempel, E. F. Sperber, and S. L. Moshé, Age-related changes of muscimol binding in the substantia nigra, Dev Brain Res 43: 305–307 (1988).

    Article  CAS  Google Scholar 

  40. E. F. Sperber, B. Y. Wong, J. N. D. Wurpel, and S. L. Moshé, Nigral infusions of muscimol or bicuculline facilitate seizures in developing rats, Dev. Brain Res. 37: 243–250 (1987).

    Article  CAS  Google Scholar 

  41. E. F. Sperber, J. N. D. Wurpel, and S. L. Moshé, Evidence for the involvement of nigral GABAB receptors in seizures of rat pups, Day Brain Res. 47: 143–146 (1989).

    Article  CAS  Google Scholar 

  42. C. McIntyre, Amygdala kindling in rats: facilitation after local amygdala norepinephrine depletion with 6hydroxydopamine, Exp.Neuro1. 69: 395–407 (1979).

    Article  Google Scholar 

  43. C. D. Applegate, J. L. Burchfiel, and R. J. Konkol, Kindling antagonism: effects of norepinephrine depletion on kindled seizure suppression after concurrent alternating stimulation in rats. Exp Neurol. 94: 379–390 (1986).

    Article  PubMed  CAS  Google Scholar 

  44. J. L. Burchfiel, C. D. Applegate, and R. J. Konkol, Kindling antagonism: A role for norepinephrine in seizure suppression, in: “Kindling 3”, J. A. Wada, ed., Raven Press, N.Y. (1972).

    Google Scholar 

  45. L. P. Lanier, A. J. Dunn, and C. V. Hartesveldt, in: “Reviews of Neuroscience vol. 2”, S. Ehrenpreis and I.J. Kopin, eds., Raven Press, N. Y. (1976).

    Google Scholar 

  46. R. J. Konkol, E. G. Bendeich, and G. R. Breese, A biochemical and morphological study of the altered growth pattern of central catecholamine neurons following 6-hydroxydopamine, Brain Res. 140: 125–135 (1978).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Sperber, E.F., Haas, K., Moshé, S.L. (1990). Mechanisms of Kindling in Developing Animals. In: Wada, J.A. (eds) Kindling 4. Advances in Behavioral Biology, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5796-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5796-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5798-8

  • Online ISBN: 978-1-4684-5796-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics