Skip to main content

Gating Compliance, a Reduction in Hair-Bundle Stiffness Associated with the Gating of Transduction Channels in Hair Cells from the Bullfrog’s Sacculus

  • Chapter
Cochlear Mechanisms: Structure, Function, and Models

Part of the book series: NATO ASI Series ((NSSA))

Abstract

The electrical response of any organ of the internal ear or lateral-line system depends upon the hair cell’s sensitivity to mechanical stimulation. This mechano-sensitivity resides in the hair bundle, a cluster of 20–300 stereocilia that extends from the apical surface of the cell. Sound, acceleration, or water motion causes movement of an accessory structure such as a tectorial membrane, otolithic membrane, or cupula, which in turn deflects the hair bundle’s tip. By opening transduction channels, excitatory deflection then produces a depolarizing receptor potential which modulates the cell’s release of synaptic transmitter and hence the activity in eighth-nerve fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, C. M. and Bezanilla, F. (1974) Charge movement associated with the opening and closing of the activation gates of the Na channels. J. Gen. Physiol. 63, 533–552.

    Article  PubMed  CAS  Google Scholar 

  • Corey, D. P. and Hudspeth, A. J. (1980) Mechanical stimulation and micromanipulation with piezoelectric bimorph elements. J. Neurosci. Meth. 3, 183–202.

    Article  CAS  Google Scholar 

  • Corey, D. P. and Hudspeth, A. J. (1983) Kinetics of the receptor current in bullfrog saccular hair cells. J. Neurosci. 3, 962–976.

    PubMed  CAS  Google Scholar 

  • Crawford, A. C. and Fettiplace, R. (1985) The mechanical properties of ciliary bundles of turtle cochlear hair cells. J. Physiol. 364, 359–379.

    PubMed  CAS  Google Scholar 

  • Eatock, R. A., Corey, D. P., and Hudspeth, A. J. (1987) Adaptation of mechanoelectrical transduction in hair cells of the bullfrog’s sacculus. J. Neurosci. 7, 2821–2836.

    PubMed  CAS  Google Scholar 

  • Flock, Å. and Strelioff, D. (1984) Sensory hairs in the mammalian hearing organ have graded and nonlinear mechanical properties. Nature 310, 597–599.

    Article  PubMed  CAS  Google Scholar 

  • Guharay, F. and Sachs, F. (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. 352:685–701.

    PubMed  CAS  Google Scholar 

  • Holton, T. and Hudspeth, A. J. (1986) The transduction channel of hair cells from the bull-frog characterized by noise analysis. J. Physiol. 375, 195–227.

    PubMed  CAS  Google Scholar 

  • Howard, J. and Ashmore, J. F. (1986) Stiffness of sensory hair bundles in the sacculus of the frog. Hearing Res. 23, 93–104.

    Article  CAS  Google Scholar 

  • Howard, J. and Hudspeth, A. J. (1987a) Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog’s saccular hair cell. Proc. Natl. Acad. Sci. U.S.A. 84, 3064–3068.

    Article  PubMed  CAS  Google Scholar 

  • Howard, J. and A. J. Hudspeth (1987b) Adaptation of mechanoelectrical transduction in hair cells. In: Sensory Transduction (Eds.: Hudspeth, A. J., MacLeish, P. R., Margolis, F. L., and Wiesel, T. N.) Report of the 1987 FESN Study Group; Discussions in Neurosciences, Volume IV, Number 3; Fondation pour l’Etude du Système Nerveux Central et Périphérique, Geneva, pp. 138-145.

    Google Scholar 

  • Howard, J. and Hudspeth, A. J. (1988) Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron 1, in press.

    Google Scholar 

  • Howard, J., Roberts, W. M., and Hudspeth, A. J. (1988) Mechanoelectrical transduction by hair cells. Ann. Rev. Biophys. Biophys. Chem. 17, in press.

    Google Scholar 

  • Hudspeth, A. J. (1985a) The cellular basis of hearing: the biophysics of hair cells. Science 230, 745–752.

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth, A. J. (1985b) Models for mechanoelectrical transduction by hair cells. In: Contemporary Sensory Neurobiology (Eds.: Correia, M. J. and Perachio, A. A.) Alan R. Liss, New York, pp. 193–205.

    Google Scholar 

  • Hudspeth, A. J. and Corey, D. P. (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc. Natl. Acad. Sci. U.S.A. 74, 2407–2411.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, A. F. and Simmons, R. M. (1971) Proposed mechanism of force generation in striated muscle. Nature 233, 533–538.

    Article  PubMed  CAS  Google Scholar 

  • Pickles, J. O., Comis, S. D., and Osborne, M. P. (1984) Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hearing Res. 15, 103–112.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Hudspeth, A.J., Roberts, W.M., Howard, J. (1989). Gating Compliance, a Reduction in Hair-Bundle Stiffness Associated with the Gating of Transduction Channels in Hair Cells from the Bullfrog’s Sacculus. In: Wilson, J.P., Kemp, D.T. (eds) Cochlear Mechanisms: Structure, Function, and Models. NATO ASI Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5640-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5640-0_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5642-4

  • Online ISBN: 978-1-4684-5640-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics